Формула сокращенного деления. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Содержание

Многочлен. Действия с многочленами.

Многочленом принято называть выражение которое является суммой нескольких одночленов. Рассмотрим примеры многочленов:

Одночлены — произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы, входящие в состав многочлена называются – члена многочлена.

Так членами многочлена 5ху+у-10 являются 5ху; у; -10.

Если многочлен состоит из двух членов, то его называют двучленом:

5x 2 y – 7a 3 b 4; y+5b 6 ; 7a 3 +13с 5 .

Если из трех – трехчленом:

5x 2 y – 7a 3 b 4 +7; y+5b 6 -2а; 7a 3 +13с 5 -4х

Договорились рассматривать одночлен как частный случай многочлена. Считают, что такой многочлен состоит из одного члена:

2x 3 ; 3 ; 0 ; 7x 5 y.

Если среди одночленов, составляющих многочлен есть подобные, то их принято называть подобными членами многочлена.

Например, в многочлене 7 а 4 с+с 3 +8-5с 3 -3а 4 с+2 подобными членами многочлена являются 7 а 4 с и -3а 4 с; с 3 и-5с 3 ;8 и 2. Далее используя правило приведения подобных слагаемых упростим этот многочлен.

7 а 4 с+с 3 +8-5с 3 -3а 4 с+2=4а 4 с-4с 3 +10

Такое упрощение называют приведением подобных членов многочлена. Подобное преобразование позволяет заменить многочлен на тождественно равный ему, но более простой – с меньшим количеством членов.

Сумма и разность многочленов.

Для того, чтобы преобразовать сумму и разность многочленов в многочлен стандартного вида, надо:

1) раскрыть скобки;

2) привести подобные члены

Раскрытие скобок аналогично раскрытию скобок при действиях с числами. Если перед скобками стоит «+», слагаемые сохраняют знаки, если «-» — знаки меняются на противоположные.

(подобные многочлены для удобства разбора выделены цветом)

Умножение и деление многочлена.

Каждый член многочлена умножить на одночлен и полученные произведения сложить (с учетом знаков слагаемых).

Деление многочлена на одночлен производится по аналогичному правилу.

Деление многочленов выполняется «углом», если степень многочлена-делимого не меньше степени многочлена делителя.

Образовательный журнал для школьников, воспитателей и учителей

Калькулятор онлайн.Упрощение многочлена.Умножение многочленов. Формулы сокращенного умножения

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей , решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

Первая х 2 — у 2 = (х — у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х — у) 2 = х 2 — 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая (х — у) 3 = х 3 — 3х 2 у + 3ху 2 — у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая х 3 + у 3 = (х + у) (х 2 — ху + у 2) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х 3 — у 3 = (х — у) (х 2 + ху + у 2) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

О существовании этих закономерностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник , заключенный между отрезками a и b”.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Читать еще:  Энцефалопатия головного мозга корсаковский синдром. Энцефалопатия гайе-вернике

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Одними из основных формул сокращенного умножения является формулы квадрата суммы и квадрата разности двух одночленов.

Данные формулы можно вывести с помощью Бинома Ньютона.

Формула бинома Ньютона для натуральных чисел имеет следующий вид:

Здесь $C^0_n, C^1_n,dots ,C^_n,C^n_n$ — коэффициенты Бинома Ньютона.

Коэффициенты разложения Бинома Ньютона можно находить с помощью треугольника Паскаля.

Треугольник Паскаля имеет следующую структуру (рис. 1).

Рисунок 1. Структура треугольника Паскаля

Значения коэффициентов треугольника паскаля приведены в следующей таблице (рис. 2):

Рисунок 2. Коэффициенты треугольника Паскаля

Формула квадрата суммы

Выведем с использованием формулы Бинома Ньютона формулу квадрата суммы $<(a+b)>^2$. Из формулы Бинома Ньютона получаем:

Используя таблицу 2, получим:

Таким образом, квадрат суммы двух выражений равен сумме квадрата первого выражения с удвоенным произведением первого выражения на второе и квадратом второго выражения:

Пример 1: возвести в квадрат $(2x+3y)$

Используя формулу квадрата суммы, получим:

Здесь стоит обратить особое внимание, что формулу надо применяя к одночленам, входящим в сумму, целиком. Типичной ошибкой в данном случае бывает то, что зачастую в квадрат возводят только часть одночлена (к примеру, возводят не $2x$ целиком, а только $x$, что является ошибкой. )

Формула квадрата разности

Найдем теперь формулу разности суммы. Для этого вначале представим выражение в следующем виде:

Воспользуемся формулой Бинома Ньютона:

Используя таблицу 2, получим:

Таким образом, квадрат разности двух выражений равен сумме квадрата первого выражения с квадратом второго выражения без удвоенного произведения первого выражения на второе:

Примеры задач на использование формул квадрата суммы и разности

Выполнить возведение в квадрат:

Поменяем одночлены, стоящие в скобке, местами:

Воспользуемся формулой квадрата разности:

Так как квадрат всегда положительное число, то получим.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
(5a^4 — 2a^3 + 0,3a^2 — 4,6a + 8 )
(xy^3 — 5x^2y + 9x^3 — 7y^2 + 6x + 5y — 2 )

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
(8b^5 — 2b cdot 7b^4 + 3b^2 — 8b + 0,25b cdot (-12)b + 16 )
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
(8b^5 — 2b cdot 7b^4 + 3b^2 — 8b + 0,25b cdot (-12)b + 16 = )
(= 8b^5 — 14b^5 + 3b^2 -8b -3b^2 + 16 )

Приведем в полученном многочлене подобные члены:
(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 )
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен (12a^2b — 7b ) имеет третью степень, а трехчлен (2b^2 -7b + 6 ) — вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
(5x — 18x^3 + 1 + x^5 = x^5 — 18x^3 + 5x + 1 )

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки — это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
(9a^2b(7a^2 — 5ab — 4b^2) = )
(= 9a^2b cdot 7a^2 + 9a^2b cdot (-5ab) + 9a^2b cdot (-4b^2) = )
(= 63a^4b — 45a^3b^2 — 36a^2b^3 )

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Читать еще:  Медовый месяц в августе. Свадебное путешествие в августе - куда поехать? Свадебное путешествие в Испанию

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения ((a + b)^2, ; (a — b)^2 ) и (a^2 — b^2 ), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, ((a + b)^2 ) — это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения ((a + b)^2, ; (a — b)^2 ) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = )
(= a^2 + 2ab + b^2 )

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

((a + b)^2 = a^2 + b^2 + 2ab ) — квадрат суммы равен сумме квадратов и удвоенного произведения.

((a — b)^2 = a^2 + b^2 — 2ab ) — квадрат разности равен сумме квадратов без удвоенного произведения.

(a^2 — b^2 = (a — b)(a + b) ) — разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

В предыдущем уроке мы разобрались с разложением на множители. Освоили два способа: вынесение общего множителя за скобки и группировку. В этом уроке — следующий мощный способ: формулы сокращённого умножения . В краткой записи — ФСУ.

Формулы сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне необходимы во всех разделах математики. Они применяются в упрощении выражений, решении уравнений, умножении многочленов, сокращении дробей, решении интегралов и т.д. и т.п. Короче, есть все основания разобраться с ними. Понять откуда они берутся, зачем они нужны, как их запомнить и как применять.

Глаза. Лизы. Ресницы. Проблемы. Диагностика. Аптечка

Все формулы сокращенного умножения. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
(5a^4 — 2a^3 + 0,3a^2 — 4,6a + 8 )
(xy^3 — 5x^2y + 9x^3 — 7y^2 + 6x + 5y — 2 )

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
(8b^5 — 2b cdot 7b^4 + 3b^2 — 8b + 0,25b cdot (-12)b + 16 )
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
(8b^5 — 2b cdot 7b^4 + 3b^2 — 8b + 0,25b cdot (-12)b + 16 = )
(= 8b^5 — 14b^5 + 3b^2 -8b -3b^2 + 16 )

Приведем в полученном многочлене подобные члены:
(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 )
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен (12a^2b — 7b ) имеет третью степень, а трехчлен (2b^2 -7b + 6 ) — вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
(5x — 18x^3 + 1 + x^5 = x^5 — 18x^3 + 5x + 1 )

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки — это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
(9a^2b(7a^2 — 5ab — 4b^2) = )
(= 9a^2b cdot 7a^2 + 9a^2b cdot (-5ab) + 9a^2b cdot (-4b^2) = )
(= 63a^4b — 45a^3b^2 — 36a^2b^3 )

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения ((a + b)^2, ; (a — b)^2 ) и (a^2 — b^2 ), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, ((a + b)^2 ) — это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения ((a + b)^2, ; (a — b)^2 ) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = )
(= a^2 + 2ab + b^2 )

Читать еще:  Моды на магию и заклинания для скайрим. Мод для Skyrim Утерянные секреты магии

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

((a + b)^2 = a^2 + b^2 + 2ab ) — квадрат суммы равен сумме квадратов и удвоенного произведения.

((a — b)^2 = a^2 + b^2 — 2ab ) — квадрат разности равен сумме квадратов без удвоенного произведения.

(a^2 — b^2 = (a — b)(a + b) ) — разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Одной из первых тем, изучаемых в курсе алгебры, являются формулы сокращённого умножения. В 7 классе они применяются в самых простых ситуациях, где требуется распознать в выражении одну из формул и выполнить разложение многочлена на множители или, наоборот, быстро возвести сумму или разность в квадрат или куб. В дальнейшем ФСУ используют для быстрого решения неравенств и уравнений и даже для вычисления некоторых числовых выражений без калькулятора.

Как выглядит список формул

Существует 7 основных формул, позволяющих быстро осуществить перемножение многочленов в скобках.

Иногда в этот список также включается разложение для четвёртой степени, которое следует из представленных тождеств и имеет вид:

Все равенства имеют пару (сумма — разность), кроме разности квадратов. Для суммы квадратов формула не приводится .

Остальные равенства легко запоминаются :

Следует помнить, что ФСУ работают в любом случае и для любых величин a и b : это могут быть как произвольные числа, так и целые выражения.

В ситуации, если вдруг не получается вспомнить, какой знак стоит в формуле перед тем или иным слагаемым, можно раскрыть скобки и получить тот же результат, что и после использования формулы. Например, если проблема возникла при применении ФСУ куба разности, нужно записать исходное выражение и поочерёдно выполнить умножение :

(a — b)³ = (a — b)(a — b)(a — b) = (a² — ab — ab + b²)(a — b) = a³ — a²b — a²b + ab² — a²b + ab² + ab² — b³ = a³ — 3a²b + 3ab² — b³.

В результате после приведения всех подобных членов был получен такой же многочлен, как и в таблице. Такие же манипуляции можно проводить и со всеми остальными ФСУ.

Применение ФСУ для решения уравнений

К примеру, нужно решить уравнение, содержащее многочлен 3 степени :

x³ + 3x² + 3x + 1 = 0.

В школьной программе не рассматриваются универсальные приёмы для решения кубических уравнений, и подобные задания чаще всего решаются более простыми методами (например, разложением на множители). Если заметить, что левая часть тождества напоминает куб суммы, то уравнение можно записать в более простом виде:

Корень такого уравнения вычисляется устно: x = -1 .

Аналогичным способом решаются неравенства. Для примера можно решить неравенство x³ — 6x² + 9x > 0 .

В первую очередь необходимо разложить выражение на множители. Вначале нужно вынести за скобку x . После этого следует обратить внимание, что выражение в скобках можно преобразовать в квадрат разности.

Затем необходимо найти точки, в которых выражение принимает нулевые значения, и отметить их на числовой прямой. В конкретном случае это будут 0 и 3. Затем методом интервалов определить, в каких промежутках x будет соответствовать условию неравенства.

ФСУ могут оказаться полезными при выполнении некоторых расчётов без помощи калькулятора :

703² — 203² = (703 + 203)(703 — 203) = 906 ∙ 500 = 453000 .

Кроме того, раскладывая выражения на множители, можно легко выполнять сокращение дробей и упрощение различных алгебраических выражений.

Примеры задач для 7−8 класса

В заключение разберём и решим два задания на применение формул сокращённого умножения по алгебре.

Задача 1. Упростить выражение:

(m + 3)² + (3m + 1)(3m — 1) — 2m (5m + 3).

Решение. В условии задания требуется упростить выражение, т. е. раскрыть скобки, выполнить действия умножения и возведения в степень, а также привести все подобные слагаемые. Условно разделим выражение на три части (по числу слагаемых) и поочерёдно раскроем скобки, применяя ФСУ там, где это возможно.

  • (m + 3)² = m² + 6m + 9 (квадрат суммы);
  • (3m + 1)(3m — 1) = 9m² — 1 (разность квадратов);
  • В последнем слагаемом необходимо выполнить перемножение: 2m (5m + 3) = 10m² + 6m .

Подставим полученные результаты в исходное выражение:

(m² + 6m + 9) + (9m² — 1) — (10m² + 6m) .

С учётом знаков раскроем скобки и приведём подобные слагаемые:

m² + 6m + 9 + 9m² 1 — 10m² — 6m = 8.

Задача 2. Решить уравнение, содержащее неизвестное k в 5 степени:

k⁵ + 4k⁴ + 4k³ — 4k² — 4k = k³.

Решение. В этом случае необходимо воспользоваться ФСУ и методом группировки. Нужно перенести последнее и предпоследнее слагаемое в правую часть тождества.

k⁵ + 4k⁴ + 4k³ = k³ + 4k² + 4k.

Из правой и из левой части выносится общий множитель (k² + 4k +4) :

k³(k² + 4k + 4) = k (k² + 4k + 4) .

Всё переносится в левую часть уравнения, чтобы в правой остался 0:

k³(k² + 4k + 4) — k (k² + 4k + 4) = 0 .

Снова необходимо вынести общий множитель:

Из первого полученного сомножителя можно вынести k . По формуле краткого умножения второй множитель будет тождественно равен (k + 2)² :

Использование формулы разности квадратов:

k (k — 1)(k + 1)(k + 2)² = 0.

Поскольку произведение равно 0, если хотя бы один из его множителей нулевой, найти все корни уравнения не составит труда:

На основании наглядных примеров можно понять, как запомнить формулы, их отличия, а также решить несколько практических задач с применением ФСУ. Задачи простые, и при их выполнении не должно возникнуть никаких сложностей.

В предыдущем уроке мы разобрались с разложением на множители. Освоили два способа: вынесение общего множителя за скобки и группировку. В этом уроке — следующий мощный способ: формулы сокращённого умножения . В краткой записи — ФСУ.

Формулы сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне необходимы во всех разделах математики. Они применяются в упрощении выражений, решении уравнений, умножении многочленов, сокращении дробей, решении интегралов и т.д. и т.п. Короче, есть все основания разобраться с ними. Понять откуда они берутся, зачем они нужны, как их запомнить и как применять.

Источники:

http://www.calc.ru/Mnogochlen-Deystviya-S-Mnogochlenami.html
http://www.chalt-1school.ru/physics-of-the-earth/kalkulyator-onlain-uproshchenie-mnogochlena-umnozhenie-mnogochlenov/
http://store-e.ru/vse-formuly-sokrashchennogo-umnozheniya-kalkulyator-onlain-uproshchenie-mnogochlena/

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector