Нахождение части от целого и целого по его части. Образцы решения типовых задач на проценты

matem

вторник, 30 декабря 2008 г.

Образцы решения типовых задач на проценты

ОСНОВНЫЕ ТИПЫ РЕШЕНИЯ ЗАДАЧ НА ПРОЦЕНТЫ

I. НАХОЖДЕНИЕ ЧАСТИ ОТ ЦЕЛОГО

Чтобы найти часть (%) от целого, надо число умножить на часть (проценты, переведенные в десятичную дробь).

ПРИМЕР: В классе 32 ученика. Во время контрольной работы отсутствовало 12,5% учащихся. Найди, сколько учеников отсутствовало?
РЕШЕНИЕ 1: Целое в этой задаче – общее количество учащихся (32).
12,5% = 0,125
32 · 0,125 = 4
РЕШЕНИЕ 2: Пусть х учеников отсутствовали, что составляет 12,5%. Если 32 ученика –
общее количество учеников (100%), то
32 ученика – 100%
х учеников – 12,5%

ОТВЕТ: В классе отсутствовало 4 ученика.

II. НАХОЖДЕНИЕ ЦЕЛОГО ПО ЕГО ЧАСТИ

Чтобы найти целое по его части (%-ам), надо число разделить на часть (проценты, переведенные в десятичную дробь).

ПРИМЕР: Коля истратил в парке аттракционов 120 крон, что составило75% всех его карманных денег. Сколько было карманных денег у Коли до прихода в парк аттракционов?
РЕШЕНИЕ 1: В этой задаче надо найти целое, если известна данная часть и значение
этой части.
75% = 0,75
120 : 0,75 = 160

РЕШЕНИЕ 2: Пусть х крон было у Коли, что составляет целое, т.е 100%. Если он потратил 120 крон, что составило 75%, то
120 крон– 75 %
х крон – 100 %

ОТВЕТ: У Коли было 160 крон.

III. ВЫРАЖЕНИЕ В ПРОЦЕНТАХ ОТНОШЕНИЯ ДВУХ ЧИСЕЛ

ТИПОВОЙ ВОПРОС:
СКОЛЬКО % СОСТАВЛЯЕТ ОДНА ВЕЛИЧИНА ОТ ДРУГОЙ?

ПРИМЕР: Ширина прямоугольника 20м, а длина 32м. Сколько % составляет ширина от длины? (Длина является основой для сравнения)
РЕШЕНИЕ 1:

РЕШЕНИЕ 2: В этой задаче длина прямоугольника 32м составляет 100%, тогда ширина 20м составляет х%. Составим и решим пропорцию:
20 метров – х %
32 метра – 100 %

ОТВЕТ: Ширина составляет от длины 62,5%.

NB! Обратите внимание на то, как меняется решение в зависимости от изменения вопроса.

ПРИМЕР: Ширина прямоугольника 20м, а длина 32м. Сколько % составляет длина от ширины? (Ширина является основой для сравнения)
РЕШЕНИЕ 1:

РЕШЕНИЕ 2: В этой задаче ширина прямоугольника 20м составляет 100%, тогда длина 32м составляет х%. Составим и решим пропорцию:
20 метров – 100 %
32 метра – х %

ОТВЕТ: Длина составляет от ширины 160%.

IV. ВЫРАЖЕНИЕ В ПРОЦЕНТАХ ИЗМЕНЕНИЯ ВЕЛИЧИНЫ

ТИПОВОЙ ВОПРОС:
НА СКОЛЬКО % ИЗМЕНИЛАСЬ (УВЕЛИЧИЛАСЬ, УМЕНЬШИЛАСЬ) ПЕРВОНАЧАЛЬНАЯ ВЕЛИЧИНА?

Чтобы найти изменение величины в % надо:
1) найти на сколько изменилась величина (без %)
2) разделить полученную величину из п.1) на величину, являющуюся основой для сравнения
3) перевести результат в % (выполнив умножение на 100%)

ПРИМЕР: Цена платья снизилась с 1250 крон до 1000 крон. Найди на сколько процентов снизилась цена платья?
РЕШЕНИЕ 1:

1) 1250 –1000= 250 (кр) на столько изменилась цена
2) Основа для сравнения здесь 1250 крон (т.е. то, что было изначально)
3)
Решение задачи одним действием:
ОТВЕТ: Цена платья уменьшилась на 20%.

NB! Обратите внимание на то, как меняется решение в зависимости от изменения вопроса.

ПРИМЕР: Цена платья повысилась с 1000 крон до 1250 крон. Найди на сколько процентов повысилась цена платья?
РЕШЕНИЕ 1:

1) 1250 –1000= 250 (кр) на столько изменилась цена
2) Основа для сравнения здесь 1000 крон (т.е. то, что было изначально)
3)
Решение задачи одним действием:

РЕШЕНИЕ 2:
1250 –1000= 250 (кр) на столько изменилась цена
В этой задаче первоначальная цена 1000 крон 100%, тогда изменение цены 250 крон составляет х%. Составим и решим пропорцию:
1000 крон – 100 %
250 крон – х %

х =
ОТВЕТ: Цена платья увеличилась на 25%.

V. ПОСЛЕДОВАТЕЛЬНОЕ ИЗМЕНЕНИЕ ВЕЛИЧИНЫ (ЧИСЛА)

ПРИМЕР: Число уменьшили на 15%, а затем увеличили на 20%. Найди на сколько процентов изменилось число?

Самая распространенная ошибка: число увеличилось на 5 %.

РЕШЕНИЕ 1:
1) Хотя исходное число не дано, для простоты решения можно принять его за 100 (т.е. одно целое или 1)
2) Если число уменьшилось на 15%, то полученное число составит 85%, или от 100 это было бы 85.
3) Теперь полученный результат надо увеличить на 20%, т.е
85 – 100%
а новое число х – 120% (т.к. увеличилось на 20%)

х =
4)Таким образом в результате изменений число 100 (первоначальное) изменилось и стало 102, а это означает, что первоначальное число увеличилось на 2%

РЕШЕНИЕ 2:
1) Пусть исходное число Х
2) Если число уменьшилось на 15%, то полученное число составит 85% от Х, т.е. 0,85Х.
3) Теперь полученное число надо увеличить на 20%, т.е
0,85Х – 100%
а новое число ? – 120% (т.к. увеличилось на 20%)

? =
4) Таким образом в результате изменений число Х (первоначальное), является основой для сравнения, а число 1,02Х(полученное), (см. IV тип решения задач), тогда

ОТВЕТ: Число увеличилось на 2%.

Читать еще:  Поздравление животноводам. Красивое поздравление с днем работника сельского хозяйства

Нахождение части от целого и целого по его части. Образцы решения типовых задач на проценты

Решения задач на проценты

Ключевые слова конспекта: решения задач на проценты, ответы на типовые задачи, решения с пояснениями, математика для 5-6 классов; нахождение нескольких процентов от данной величины, восстановление величины по известным ее процентам, выражение отношения в процентах, увеличение (уменьшение) на несколько процентов, прикидка вместо точных подсчетов, увеличение (уменьшение) на несколько процентов раз и еще раз, сложные проценты, увеличение на 100%, 200%, уменьшение в несколько раз, проценты от процентов целого, нахождение целого по его процентам, выражение остатка процентами целого, выражение величины процентами целого, проценты от процентов целого, оставшиеся проценты целого, сложение процентов, уменьшение (увеличение) на несколько процентов, сравнение величин, отношение процентов, «потери», выраженные в процентах, концентрация раствора.

Задача № 1. Нахождение нескольких процентов от данной величины.

В избирательном округе 35 000 избирателей. В голосовании приняло участие 67% всех избирателей. Сколько человек голосовало?

Способ 1.
Сначала найдем 1% всего числа избирателей, т.е. одну сотую целого: 35 000 : 100 = 350. Теперь найдем 67% всего числа избирателей: 350 • 67 = 23 450.

Способ 2.
Используем умение находить часть целого. 67% величины – это 67 ее сотых долей, т.е. 67% выражаются дробью 67/100, или 0,67. Чтобы найти 67/100 (или 0,67), нужно 35 000 умножить на дробь: 35 000 • 0,67 = 23 450.

Ответ: 23 450 избирателей.

Задача № 2. Восстановление величины по известным ее процентам.

В избирательном округе голосовало 23 450 избирателей, что составило 67% всех избирателей. Сколько всего избирателей в округе?

Способ 1.
Сначала найдем 1% избирателей, принявших участие в голосовании: 23 450 : 67 = 350. Теперь найдем 100% всего числа избирателей: 350 • 100 = 35 000.

Способ 2.
Используем умение восстанавливать целое по известной его части.
67% величины – это 67 ее сотых долей, т.е. 67% выражаются дробью 67/100 или 0,67.
Чтобы найти 67/100 (или 0,67), нужно 23 450 разделить на дробь: 23 450 : 0,67 = 35 000.

Ответ: 35 000 избирателей.

Задача № 3. Выражение отношения в процентах.

На телеграфе получено 360 телеграмм. Из них 144 телеграммы – поздравительные. Сколько процентов составляет часть поздравительных телеграмм?

Сначала найдем, какую часть одна величина (число поздравительных телеграмм) составляет от другой (общего числа телеграмм): 144/360 = 2/5, затем выразим ее при необходимости десятичной дробью, а затем – и процентах 40%.

Задача № 4. Увеличение (уменьшение) на несколько процентов.

Цена упаковки составляет 6% цены игрушки. Какова стоимость игрушки с упаковкой, если цена игрушки 650 р.?

Способ 1.
Сначала найдем цену упаковки: 650 : 100 • 6 = 39 (р.). Теперь, увеличив цену, найдем стоимость игрушки с упаковкой: 650 + 39 = 689 (р.).

Способ 2.
Стоимость игрушки с упаковкой увеличилась на 6% и составила 100% + 6% = 106% цены игрушки. Так как 106% соответствует дроби 1,06 (или 106/100), то найдем 1,06 от 650. Имеем 650 • 1,06 = 689 (р.)

Задача № 5. Прикидка вместо точных подсчетов.

Примечание. Полезно знать некоторые факты. Так, чтобы увеличить целое на 50%, достаточно прибавить к нему половину; чтобы найти 20% величины, надо найти ее пятую часть; что треть величины – это примерно 33%. Кроме того, нередко в реальной жизни достаточно вместо точных подсчетов выполнить грубую прикидку.

Во время распродажи масляные краски для рисования стоимостью 213 р. за коробку продавали на 19% дешевле. Сколько примерно денег сэкономит художественная студия, если она купит партию в 150 коробок?

213 р. – это примерно 200 р., 19% – это примерно 20%, т.е. пятая часть цены. Следовательно, коробка красок стоит на 200 : 5 = 40 р. дешевле, а 150 коробок на 40 • 150 = 6000 р. дешевле.

Ответ: примерно 6 тыс. р.

Задача № 6. Увеличение (уменьшение) на несколько процентов раз и еще раз.

а) Зонт стоит 360 р. В ноябре цена зонта была снижена на 15%, а в декабре – еще на 10%. Какой стала стоимость зонта в декабре?

Найдем стоимость зонта в ноябре: она составляет 85% от 360 р. Имеем: 360 • 0,85 = 306 (р.). Второе снижение цены происходило относительно новой цены зонта; теперь следует находить 90% от 306 р. Имеем: 306 • 0,9 = 275,4 (р.).

Ответ: 275 р. 40 к.

Дополнительный вопрос: на сколько процентов по отношению к первоначальной цене подешевел зонт?
Подсказка к решению. Найдите отношение последней цены к исходной, выразите его в процентах и сравните со 100%.

Ответ: зонт подешевел на 23,5%.

Задача № 7. Сложные проценты.

а) Несколько лет тому назад в лесничестве росло 10 000 берез. Ежегодно подсаживали примерно 10% новых берез и в этом году насчитали примерно 13 300 берез. За сколько лет произошел такой прирост березовой рощи?

Ежегодно число деревьев увеличивалось на 10%, т.е. в 1,1 раза, и составило в первый год 10 000 • 1,1 = 11 000, во второй 11 000 • 1,1 = 12 100, в третий 12 100 • 1,1 = 13 310 берез.

Ответ: за 3 года.

Задача № 8. Увеличение на 100%, 200%.

Фирма в первый месяц выпустила 160 игрушечных автомобилей. В следующем месяце она увеличила выпуск этих игрушек на 200%. Во сколько раз увеличился выпуск игрушечных автомобилей? Сколько игрушечных автомобилей стала выпускать фирма?

Читать еще:  Печем вафли в вафельнице рецепт. Венские вафли: рецепт для электровафельницы и секрет теста

Исходный выпуск автомобилей составляет 100%, т.е. 160 автомобилей – это 100%. Тогда в следующем месяце выпуск автомобилей составил 100% + 200% = = 300%, т.е. в 3 раза больше. Значит, фирма стала выпускать 160 • 3 = 480 автомобилей.

Ответ: в 3 раза, 480 автомобилей.

Задача № 9. Уменьшение в несколько раз.

Во сколько раз меньше стал стоить товар, если его уценили на 98% ?

Стоимость товара 100%, а после его уценки на 98% стала 100% – 98% = 2%, т.е. уменьшилась в 100 : 2 = 50 раз.

Задача № 10. Проценты от процентов целого.

Из 550 учащихся школы в референдуме по вопросу о введении Ученического совета участвовали 88% всех учащихся. На вопрос референдума 75% учащихся, принявших участие в голосовании, ответили «да». Какой процент от числа всех учащихся школы составили те, которые ответили положительно?

Способ 1.
Выразим проценты дробями и вычислим число учащихся, утвердительно ответивших на вопрос референдума. Имеем 550 • 0,88 • 0,75 = 363 (уч.). Теперь найдем ответ на вопрос задачи: 363 : 550 = 0,66 – это 66%.

Способ 2.
Выразим проценты дробями и перемножим дроби, т.е найдем 0,75 от 0,88 и получим 0,66 – это 66%.

Задача № 11. Нахождение целого по его процентам.

Летом на дачу с детским садом выехали 180 детей. Известно, что 10% детей не поехали на дачу. Сколько всего детей в детском саду?

Выразим в процентах число детей, которые поехали на дачу: 100% – 10% = 90% и продолжим решение.

Способ 1: если 90% – это 180 детей, то 10% в 9 раз меньше, т.е. 20 детей, а 100% – это 200 детей.

Способ 2: 180 детей составляют 90%, т.е. 0,9 всех детей, найдем целое по его части: 180 : 0,9 = 200.

Ответ: 200 детей.

Задача № 12. Выражение остатка процентами целого.

Андрей за работу над новым проектом получил премию. Он истратил часть денег на подарки: 5% – родителям, 10% – жене, 7% – сыну и у него осталось 11 700 р. Какую сумму денег составила премия?

Выразим в процентах количество денег, оставшихся от премии, и вычислим целое по его проценту.
100% – 5% – 10% – 7% = 78%.
11 700 : 78/100 = 15 000 (р)

Задача № 13. Выражение величины процентами целого.

Среди участников кросса 35% студенты, остальные – старшеклассники, причем их на 252 человека больше, чем студентов. Сколько спортсменов участвует в кроссе?

Найдем, на сколько процентов больше старшеклассников, чем студентов: (100% – 35%) – 35% = 30%. Эти 30% составляют 252 человека. Имеем 252 : 0,3 = = 840 (чел.).

Ответ: 840 человек.

Задача № 14. Проценты от процентов целого.

Четверть тиража новой газеты раскуплена в первый же день ее выпуска, причем 64% этой газеты продано в газетных киосках. Сколько процентов всего тиража продано в газетных киосках?

Четверть тиража новой газеты составляют его 25%. Найдем 64% от 25%, получим 0,16, т.е. 16%.

Ответ: 16% тиража.

Задача № 15. Оставшиеся проценты целого.

Автомобиль прошел 40% пути, а затем 30% оставшегося расстояния. Сколько процентов всего пути ему осталось пройти?

Способ 1.
После того как автомобиль прошел 40% пути, ему осталось пройти еще 60% пути. Найдем 30%, т.е. 0,3 от 60%, получим 18%. Значит, всего автомобиль прошел 40% + 18% = 58% пути и ему осталось пройти 100% – 58% = 42% пути.

Способ 2.
После того как автомобиль прошел 40% пути, ему осталось пройти еще 60% пути. А когда он пройдет 30% оставшегося расстояния, то ему останется пройти 70% оставшегося расстояния. Найдем 70%, т.е. 0,7 от 60%, получим 42%.

Ответ: 42% пути. Проверьте ответ, считая путь равным конкретному числу, например, 100 км.

Задача № 16. Сложение процентов.

В школе 16% девочек и 28% мальчиков занимаются в спортивных секциях. Сколько всего процентов школьников занимаются в спортивных секциях, если число мальчиков и число девочек в школе одинаково?

Число мальчиков и девочек в школе одинаково, а значит, в школе 50% мальчиков и 50% девочек. Найдем 16%, т.е. 0,16 от 50%, получим 8%. Найдем 28%, т.е. 0,28 от 50%, получим 14%. Сложим проценты: 8% + 14% = 22% – столько процентов составляют учащиеся школы, которые занимаются в спортивных секциях.

Ответ: 22% школьников.

Задача № 17. Уменьшение (увеличение) на несколько процентов.

На весенней распродаже в одном магазине товар уценили на 40%, а через неделю еще на 5%. На ярмарке тот же товар уценили сразу на 45%. Где выгоднее покупателю купить эту вещь?

Товар выгоднее купить там, где он дешевле. В магазине после двух уценок цена товара составит 0,6 • 0,95 = 0,57 его первоначальной цены, а на ярмарке – 0,55 первоначальной цены. Так как 0,57 > 0,55, то правильный ответ: на ярмарке.

Ответ: на ярмарке.

Задача № 18. Сравнение величин.

Во время распродажи кресло, стоившее 3000 р., продавали за 2400 р. На сколько процентов была снижена цена кресла на распродаже?

Способ 1.
На сколько рублей новая цена меньше старой? На 600 р. На какую часть была снижена цена кресла? На 600/3000 = 1/5. На сколько процентов была снижена цена кресла? На 1/5 часть (на 2/10), т.е. на 20%.

Способ 2.
Какую часть новая цена составляет от старой? 2400/3000 = 8/10 = 0,8, т.е 80%. А это значит, что цена снижена на 20%.

Читать еще:  Что характеризует показатель физическая тяжесть труда. Гигиенические критерии тяжести и напряженности трудового процесса

Ответ: цена снижена на 20% .

Задача № 19. Отношение процентов.

Отношение числа девочек в школе к числу мальчиков равно 4:5. Какую часть составляют девочки от числа всех учащихся школы? А мальчики? Выразите ответ в процентах.

Если отношение числа девочек в школе к числу мальчиков равно 4:5, то число девочек составляет 4 части, а мальчиков 5 частей, а число всех учащихся школы – 9 таких же частей. Поэтому девочки от числа всех учащихся школы составляют 4/9, а мальчики 5/9.

Ответ: примерно 44% и 56%.

Задача № 20. «Потери», выраженные в процентах.

При сушке яблоки теряют 75% своей массы, т.е. ту часть влаги, которая из нее выпаривается. Сушеные яблоки содержат 20% влаги. Какова влажность свежих яблок?

Масса сушеных яблок составляет 100% – 75% = = 25% массы свежих яблок, и она содержит 0,25 • 0,2 = = 0,05, т.е. 5% влаги. Таким образом, влажность свежих яблок 75% + 5% = 80%.

Задача № 21. Концентрация раствора.

Сколько граммов воды надо добавить к 180 г сиропа, содержащего 25% сахара, чтобы получить сироп, содержащий 20% сахара?

Определим, сколько сахара в данной массе сиропа: 180 • 0,25 = 45 (г). Теперь найдем, сколько граммов 20–процентного сиропа получится, если взять 45 г сахара: 45 : 0,2 = 225 (г). Таким образом, в данную массу сиропа надо добавить 225 – 180 = 45 (г) воды.

Это конспект по математике на тему «Решения задач на проценты». Выберите дальнейшие действия:

Урок по математике по теме «Нахождение части целого и целого по его части»

Разделы: Математика

Тема урока: «Нахождение части целого и целого по его части».

Цель урока:

  1. Научиться находить дробь от числа и число по его дроби.
  2. Обобщить понятие обыкновенной дроби и действий с обыкновенными дробями.

Оборудование: Мультимедийный проектор, презентация Power Point (Приложение).

I. Организационный момент

Учащиеся рассаживаются по группам (5-6 человек). Можно предложить провести диагностику своего настроения на этапах урока. Каждому ученику дается карточка, на которой он выделяет «характер» его настроения.

II. Актуализация знаний

Мы уже знакомы с понятием обыкновенной дроби.
– Что показывает числитель дроби? (На сколько частей разделили целое).
– Что показывает знаменатель дроби? (Сколько частей взяли).

– Рассмотрите рисунок и ответьте на вопросы:

  • Что означают дроби (На сколько частей разделили фигуру и какую часть закрасили определенным цветом).
  • На каком свойстве обыкновенных дробей основаны первое и второе равенства? (Основное свойство дроби).

Учащимся предлагается воспроизвести его.

III. Устный счет. (Лучший счетчик)

Каждой команде на экране предлагается задание. Команды поочередно выполняют задание.

Подводится итог – какая команда является лучшим счетчиком.

IV. Диктант

Диктант проводится с последующей самопроверкой . Возможно выполнение под копирку, один экземпляр учащиеся сдают учителю на проверку.

1. Вместо х вставить пропущенное число:

2. Сократить дробь:

3. Расположить дроби в порядке убывания:

4. Выполнить действия:

5. На островах Тихого океана живут черепахи – гиганты. Они такой величины, что дети могут кататься, сидя у них на панцире. Узнать название самой крупной в мире черепахи поможет нам следующее задание.

После сдачи решения, учащиеся проверяют ответы.

V. Новый материал

Учитель предлагает решить задачи (на их обдумывание дается минут 5 – 7)

1. На ветке сидело 12 птиц. Затем из них улетело. Сколько птиц улетело?

2. В Вашем классе по математике за третью четверть получили отметку «5» 6 человек. Это составляет от числа всех учащихся в классе. Сколько учащихся в классе?

Затем сверяется решение, которое показывается на слайде.

1 способ: 12 : 3 2 = 8 (птиц)

2 способ: 12 = 8 (птиц)

2 задача. 6 : = 6 = 34 (чел.)

Учитель обращает внимание на то, что можно выделить два типа задач:

Далее проговаривается правило.

1. Чтобы найти часть от числа, выраженную дробью, нужно это число умножить на данную дробь.
2. Чтобы найти число по его части, выраженной дробью, нужно разделить на эту дробь число, ей соответствующее.

Учащимся предлагается заучить это правило прямо в классе и в парах пересказать друг другу.

Учитель акцентирует внимание на следующее: для тех, кто затрудняется в определении типа задачи, советую обращать внимание на предлоги что, это. Эти предлоги встречаются в задачах на нахождение числа по его дроби.

VI. Закрепление нового материала

На слайде условие шести задач и учащимся предлагается рассортировать их в две колонки по типам.

1. Магазин принял для продажи 156 кг рыбы. 1/3 всей рыбы составил карп. Сколько кг карпа получил магазин?
2. Провели 18 опытов, это составило 2/9 всей серии опытов. Сколько опытов надо провести?
3. Учитель проверил 20 тетрадей. Это составило 4/5 всех тетрадей. Сколько всего тетрадей надо проверить учителю?
4. Из 72 пятиклассников 3/ 8 занимаются легкой атлетикой. Сколько учащихся занимаются этим видом спорта?
5. Для выставки отобрали 30 картин. Это составило 2/3 имеющихся в музее картин. Сколько картин взято на выставку?
6. От веревки, длиной 18 м отрезали 3/4 ее длины. Сколько метров веревки осталось?

В итоге должно получиться:

Далее учитель предлагает учащимся самим придумать по одной задачи на каждый тип. Поочередно несколько человек зачитывают задачи, а класс определяет к какому типу принадлежит задача.

VII. Итог урока

Учитель возвращает учащихся к цели урока, предлагает выделить два типа задач на дроби и алгоритмы их решения. Собираются листочки с диагностикой настроения.

VIII. Домашнее задание: П. 9.6, № 1050, 1058, 1060.

Источники:

http://mat-jelena.blogspot.com/2008/12/blog-post.html
http://uchitel.pro/%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D1%8F-%D0%B7%D0%B0%D0%B4%D0%B0%D1%87-%D0%BD%D0%B0-%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D0%BD%D1%82%D1%8B/
http://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/521014/

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector