Ускорение прямолинейное движение с постоянным ускорением. Скорость при прямолинейном движении с постоянным ускорением

1. МЕХАНИКА
1.1. Кинематика

Движение с ускорением

Равноускоренное прямолинейное движение – движение по прямой с постоянным ускорением (а = const ).

Ускорение а (размерность: м/с 2 ) – векторная физическая величина, показывающая, на сколько изменяется скорость тела за 1 с.

В векторном виде:

В проекции на ось ОХ формула аналогичная

Знаки проекции ускорения зависят от направления вектора ускорения и оси – сонаправлены они или направлены противоположно.

Измерительный прибор – акселерометр. (В ЕГЭ по физике есть вопросы, каким прибором что измеряют.)

График ускорения – зависимость проекции ускорения от времени:

График ускорения при равноускоренном прямолинейном движении – прямая, параллельная оси времени (1, 2).
Чем дальше график от оси времени (2), тем больше модуль ускорения.

Мгновенная скорость – скорость в данный момент времени или в данном месте пространства .

Скорость при равноускоренном прямолинейном движении.

В векторном виде,
в проекции на ось OX,
с учетом знака ускорения («+» разгон, «-» торможение):


График мгновенной скорости – зависимость проекции скорости от времени.

График скорости при равноускоренном прямолинейном движении – прямая (1, 2, 3). Если график располагается над осью времени, то тело движется по направлению оси ОХ.

Чем больше угол наклона графика (3), тем больше модуль ускорения.

Если график пересекает ось времени (2), то на первом этапе тело тормозило, в какой-то момент скорость его стала равной нулю, и далее тело двигалось ускоренно в противоположную сторону.

Геометрический смысл перемещения

Модуль перемещения при равноускоренном прямолинейном движенииравен площади трапеции под графиком скорости.

Формулы для определения кинематических величин равноускоренного прямолинейного движения:


«Без ускорения» и «без времени» означает, что в этих формулах не фигурирует ускорение и время, но это не значит, что ускорение равно нулю.
Цветом выделены основные формулы, остальные легко выводятся из них.

Уравнение координаты при равноускоренном прямолинейном движении позволяет определить кинематические величины равноускоренного прямолинейного движения даже в тех случаях, когда направление движения меняется:

Графики кинематических величин прямолинейного движения.
Их ндо уметь читать и рисовать. По горизонтальной оси обычно время. По вертикальной оси. будьте внимательны!

Свободное падение

Это частный случай движения с ускорением.

• Свободное падение происходит под действием только силы тяжести. Подробнее о связи силы с ускорением будет в теме «Динамика», второй закон Ньютона.

• Сопротивление воздуха обычно не учитывается.

• Все тела независимо от массы падают (в вакууме или без учета сопротивления воздуха) с одинаковым ускорением.

• Ускорение свободного падения всегда направлено вниз, к центру Земли и равно g = 9,8 м/с 2 ; в задачах округляется до
g = 10 м/с 2 .

Читать еще:  Пунктуационный разбор предложения правило памятка. Что значит и как делать пунктуационный разбор предложения

• Свободное падение по вертикали – пример равноускоренного прямолинейного движения.

• В задачах на свободное падение единицы измерения всех величин сразу следует переводить в СИ.

Основные формулы для определения кинематических величин при свободном падении (вертикальный бросок) те же, что даны выше. При этом ускорение a=g=10 м/с 2 .

Уравнение координаты при свободном падении позволяет определить кинематические величины свободного падения даже в тех случаях, когда направление движения изменяется. Уравнение координаты позволяет определить высоту тела в любой момент времени.

В разделе «Динамика» рассмотрим более сложные случаи:
— Тело подбросили от земли и поймали на некоторой высоте.
— Тело подбросили от земли, на одной и той же высоте оно побывало дважды.
— Горизонтальный бросок (движение по параболе). Бросок под углом к горизонту.

Понятие ускорения. Движение с постоянным ускорением. Формулы и пример задачи

Кинематика — это раздел механики движения в физике, который занимается исследованием и описанием перемещения тел. В данной статье приведены основные величины, что описывают механическое движение. Рассмотрим, что такое ускорение и движение с постоянным ускорением, приведем соответствующие формулы.

Три величины кинематики

Этими величинами являются путь L, скорость v¯ и ускорение a¯. Первая из них является скаляром и измеряется в метрах, вторая и третья — это величины векторные, которые выражаются в метрах в секунду и в метрах в квадратную секунду, соответственно. Все единицы соответствуют системе СИ.

Согласно определению, скорость — это быстрота перемещения тела в пространстве, то есть:

В свою очередь, ускорение — это быстрота изменения скорости, что математически записывается так:

Кинематические характеристики имеет смысл рассматривать применительно к данной траектории движения. Последняя может быть прямолинейной или криволинейной. От типа траектории зависит направление полного ускорения. Скорость же направлена к траектории всегда по касательной.

Особенности ускорения во время движения по кривой

Поскольку ускорение — это численная характеристика изменения скорости, то она однозначно описывает все аспекты этого изменения. Речь идет не только об абсолютной величине, но также и о векторе направления v¯. Изменение абсолютной величины скорости описывает тангенциальное, или касательное ускорение. Оно направлено или по вектору скорости, либо против него. Формула для его расчета имеет вид:

Поскольку тело перемещается по кривой, например по окружности, то величина v¯ постоянно меняет свое направление. Какова причина этого изменения? Она заключается в действии на тело нормального или центростремительного ускорения. Эта величина направлена перпендикулярно линии траектории и вычисляется по формуле:

Где v — абсолютное значение скорости, r — кривизна траектории (радиус окружности).

Обе составляющие полного ускорения a позволяют определить его с помощью такого равенства:

Отметим, что движение по криволинейной траектории всегда предполагает наличие у тела двух компонентов ускорения.

Движение с постоянным ускорением по прямой

Если траектория является прямой линией, то изучение процесса движения значительно облегчается. Дело в том, что при таком движении скорость направлена всегда в одном направлении, а это означает, что нормальная компонента ускорения отсутствует. Полное ускорение при прямолинейном движении однозначно определяется его тангенциальной компонентой. Далее в статье будем рассматривать только движение по прямой, поэтому величину a будем называть просто ускорением.

Особое внимание заслуживает рассмотрение процесса перемещения тела по прямой, которое осуществляется с постоянным ускорением. Для такого перемещения просто записать математические уравнения движения. Они будут рассмотрены ниже.

Читать еще:  Как подготовиться к исповеди - что нужно знать перед исповедью и причастием? Как подготовиться к исповеди и причастию? Как исповедоваться в первый раз? Отвечают священники Андрей Ткачев и Андрей Конанос.

Примерами движения тел с постоянным ускорением являются разгон автомобиля со старта, свободное падение тел в однородном поле гравитации, торможение транспортных средств.

Формулы для скорости

Рассматривая ускорение и движение с постоянным ускорением в 10 классе общеобразовательных школ, учащиеся знакомятся с формулами для определения скорости и пройденного пути. Начнем с формул для скорости.

Предположим, что тело находилось в состоянии покоя, затем оно начало движение с постоянным ускорением. Как при этом будет меняться его скорость? Ответ на этот вопрос содержит следующее равенство:

То есть скорость линейно будет возрастать. Коэффициентом пропорциональности между величинами v и t является ускорение a.

Теперь представим ситуацию, что тело двигалось с постоянной скоростью v, а затем начало ускоряться. Как изменится при этом предыдущая формула для скорости? Она примет вид:

Отметим, что отсчет времени в этой формуле начинается с момента появления у тела ускорения.

Теперь предположим третий вариант: вместо ускорения движения в предыдущем примере тело начало замедляться. В такой ситуации следует использовать выражение:

Во всех трех случаях графиками скорости от времени являются прямые линии.

Формулы для пути

Рассматривая тему ускорения и движения с постоянным ускорением прямолинейное, необходимо также привести формулы для пройденного телом пути. В конечном счете на практике именно эта кинематическая величина имеет смысл.

Соответствующие формулы для L можно получить, если взять интеграл по времени для приведенных выше выражений для скоростей. Три формулы записаны ниже:

Первое выражение определяет путь для чистого движения с неизменным ускорением, второе равенство описывает ускоренное движение с ненулевой начальной скоростью, третья формула используется для вычисления пути торможения при равнозамедленном движении.

Задача с подъемом тела в гравитационном поле

Как выше было отмечено, свободное падение происходит с постоянным ускорением. Движение с ускорением постоянным характеризуется величиной g, которая вблизи поверхности нашей планеты равна 9,81 м/с 2 .

Известно, что тело было брошено вверх вертикально. Начальная скорость равна 30 м/с. Необходимо вычислить высоту, на которую тело поднимется.

Данная задача является типичной проблемой на равнозамедленное перемещение по прямой линии. Обозначим высоту подъема буквой h. Она будет равна пути, который тело пролетит до момента его полной остановки в высоте. Эта высота равна:

Время полета можно определить из условия равенства величины v нулю в точке максимальной высоты, то есть:

Подставляя равенство для t в формулу для h, получаем:

Подставляя значение начальной скорости, приходим к ответу: h = 45,9 метра.

Прямолинейное движение с постоянным ускорением

Прямолинейное движение с постоянным ускорением

Такое движение возникает, согласно закону Ньютона, тогда, когда в сумме на тело действует постоянная сила, подгоняющая или тормозящая тело.

Хотя и не вполне точно, такие условия возникают довольно часто: тормозится под действием примерно постоянной силы трения автомашина, идущая с выключенным мотором, падает с высоты под действием постоянной силы тяжести увесистый предмет.

Зная величину результирующей силы, а также массу тела, мы найдем по формуле a = F/m величину ускорения. Так как

где t – время движения, v – конечная, а v – начальная скорость, то при помощи этой формулы можно ответить на ряд вопросов такого, например, характера: через сколько времени остановится поезд, если известна сила торможения, масса поезда и начальная скорость? До какой скорости разгонится автомашина, если известна сила мотора, сила сопротивления, масса машины и время разгона?

Читать еще:  Интересная театральная постановка для детей дошкольного возраста. Сценарии спектаклей

Часто нам бывает интересно знать длину пути, пройденного телом в равномерно-ускоренном движении. Если движение равномерное, то пройденный путь находится умножением скорости движения на время движения. Если движение равномерно-ускоренное, то подсчет величины пройденного пути производится так, как если бы тело двигалось то же время t равномерно со скоростью, равной полусумме начальной и конечной скоростей:

Итак, при равномерно-ускоренном (или замедленном) движении путь, пройденный телом, равен произведению полусуммы начальной и конечной скоростей на время движения. Такой же путь был бы пройден за то же время при равномерном движении со скоростью (1/2)(v + v). В этом смысле про (1/2)(v + v) можно сказать, что это средняя скорость равномерно-ускоренного движения.

Полезно составить формулу, которая показывала бы зависимость пройденного пути от ускорения. Подставляя v = v + at в последнюю формулу, находим:

или, если движение происходит без начальной скорости,

Если за одну секунду тело прошло 5 м, то за две секунды оно пройдет (4?5) м, за три секунды – (9?5) м и т.д. Пройденный путь возрастает пропорционально квадрату времени.

По этому закону падает с высоты тяжелое тело. Ускорение при свободном падении равно g, и формула приобретает такой вид:

если t подставить в секундах.

Если бы тело могло падать без помех каких-нибудь 100 секунд, то оно прошло бы с начала падения громадный путь – около 50 км. При этом за первые 10 секунд будет пройдено всего лишь (1/2) км – вот что значит ускоренное движение.

Но какую же скорость разовьет тело при падении с заданной высоты? Для ответа на этот вопрос нам понадобятся формулы, связывающие пройденный путь с ускорением и скоростью. Подставляя в S = (1/2)(v + v)t значение времени движения t = (v ? v)/a, получим:

или, если начальная скорость равна нулю,

Десять метров – это высота небольшого двух- или трехэтажного дома. Почему опасно прыгнуть на Землю с крыши такого дома? Простой расчет показывает, что скорость свободного падения достигнет значения v = sqrt(2·9,8·10) м/с = 14 м/с ? 50 км/ч, а ведь это городская скорость автомашины.

Сопротивление воздуха не намного уменьшит эту скорость.

Выведенные нами формулы применяются для самых различных расчетов. Применим их, чтобы посмотреть, как происходит движение на Луне.

В романе Уэллса «Первые люди на Луне» рассказывается о неожиданностях, испытанных путешественниками в их фантастических прогулках. На Луне ускорение тяжести примерно в 6 раз меньше земного. Если на Земле падающее тело проходит за первую секунду 5 м, то на Луне оно «проплывет» вниз всего лишь 80 см (ускорение равно примерно 1,6 м/с 2 ).

Написанные формулы позволяют быстро подсчитать лунные «чудеса».

Прыжок с высоты h длится время t = sqrt(2h/g). Так как лунное ускорение в 6 раз меньше земного, то на Луне для прыжка понадобится в sqrt(6) ? 2,45 раз больше времени. Во сколько же раз уменьшается конечная скорость прыжка (v = sqrt(2gh))?

На Луне можно безопасно прыгнуть с крыши трехэтажного дома. В шесть раз возрастает высота прыжка, cделанного с той же начальной скоростью (формула h = v 2 /(2g)). Прыжок, превышающий земной рекорд, будет под силу ребенку.

Источники:

http://kiselevich.ru/edu/fiz/ege-2011/11.html
http://www.syl.ru/article/448644/ponyatie-uskoreniya-dvijenie-s-postoyannyim-uskoreniem-formulyi-i-primer-zadachi
http://fis.wikireading.ru/3903

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector