Алгоритм обратного распространения ошибки (Back propagation algorithm). Метод обратного распространения ошибки: математика, примеры, код

Алгоритм обратного распространения ошибки

Алгоритм обратного распространения ошибки является одним из методов обучения многослойных нейронных сетей прямого распространения, называемых также многослойными персептронами. Многослойные персептроны успешно применяются для решения многих сложных задач.

Обучение алгоритмом обратного распространения ошибки предполагает два прохода по всем слоям сети: прямого и обратного. При прямом проходе входной вектор подается на входной слой нейронной сети, после чего распространяется по сети от слоя к слою. В результате генерируется набор выходных сигналов, который и является фактической реакцией сети на данный входной образ. Во время прямого прохода все синаптические веса сети фиксированы. Во время обратного прохода все синаптические веса настраиваются в соответствии с правилом коррекции ошибок, а именно: фактический выход сети вычитается из желаемого, в результате чего формируется сигнал ошибки. Этот сигнал впоследствии распространяется по сети в направлении, обратном направлению синаптических связей. Отсюда и название – алгоритм обратного распространения ошибки. Синаптические веса настраиваются с целью максимального приближения выходного сигнала сети к желаемому.

Рассмотрим работу алгоритма подробней. Допустим необходимо обучить следующую нейронную сеть, применив алгоритм обратного распространения ошибки:

На приведенном рисунке использованы следующие условные обозначения:

  • каждому слою нейронной сети соответствует своя буква, например: входному слою соответствует буква , а выходному – ;
  • все нейроны каждого слоя пронумерованы арабскими цифрами;
  • – синаптический вес между нейронами и ;
  • – выход нейрона .

В качестве активационной функции в многослойных персептронах, как правило, используется сигмоидальная активационная функция, в частности логистическая:

где – параметр наклона сигмоидальной функции. Изменяя этот параметр, можно построить функции с различной крутизной. Оговоримся, что для всех последующих рассуждений будет использоваться именно логистическая функция активации, представленная только, что формулой выше.

Сигмоид сужает диапазон изменения так, что значение лежит между нулем и единицей. Многослойные нейронные сети обладают большей представляющей мощностью, чем однослойные, только в случае присутствия нелинейности. Сжимающая функция обеспечивает требуемую нелинейность. В действительности имеется множество функций, которые могли бы быть использованы. Для алгоритма обратного распространения ошибки требуется лишь, чтобы функция была всюду дифференцируема. Сигмоид удовлетворяет этому требованию. Его дополнительное преимущество состоит в автоматическом контроле усиления. Для слабых сигналов (т.е. когда близко к нулю) кривая вход-выход имеет сильный наклон, дающий большое усиление. Когда величина сигнала становится больше, усиление падает. Таким образом, большие сигналы воспринимаются сетью без насыщения, а слабые сигналы проходят по сети без чрезмерного ослабления.

Целью обучения сети алгоритмом обратного распространения ошибки является такая подстройка ее весов, чтобы приложение некоторого множества входов приводило к требуемому множеству выходов. Для краткости эти множества входов и выходов будут называться векторами. При обучении предполагается, что для каждого входного вектора существует парный ему целевой вектор, задающий требуемый выход. Вместе они называются обучающей парой. Сеть обучается на многих парах.

Алгоритм обратного распространения ошибки следующий:

  1. Инициализировать синаптические веса маленькими случайными значениями.
  2. Выбрать очередную обучающую пару из обучающего множества; подать входной вектор на вход сети.
  3. Вычислить выход сети.
  4. Вычислить разность между выходом сети и требуемым выходом (целевым вектором обучающей пары).
  5. Подкорректировать веса сети для минимизации ошибки (как см. ниже).
  6. Повторять шаги с 2 по 5 для каждого вектора обучающего множества до тех пор, пока ошибка на всем множестве не достигнет приемлемого уровня.

Операции, выполняемые шагами 2 и 3, сходны с теми, которые выполняются при функционировании уже обученной сети, т.е. подается входной вектор и вычисляется получающийся выход. Вычисления выполняются послойно. На рис. 1 сначала вычисляются выходы нейронов слоя (слой входной, а значит никаких вычислений в нем не происходит), затем они используются в качестве входов слоя , вычисляются выходы нейронов слоя , которые и образуют выходной вектор сети . Шаги 2 и 3 образуют так называемый «проход вперед», так как сигнал распространяется по сети от входа к выходу.

Читать еще:  Clash Of Clans на компьютер (Справится и ребенок). Как скачать и установить clash of clans на компьютер — Подробная инструкция

Шаги 4 и 5 составляют «обратный проход», здесь вычисляемый сигнал ошибки распространяется обратно по сети и используется для подстройки весов.

Рассмотрим подробней 5 шаг – корректировка весов сети. Здесь следует выделить два нижеописанных случая.

Случай 1. Корректировка синаптических весов выходного слоя

Например, для модели нейронной сети на рис. 1, это будут веса имеющие следующие обозначения: и . Определимся, что индексом будем обозначать нейрон, из которого выходит синаптический вес, а – нейрон в который входит:

Введем величину , которая равна разности между требуемым и реальным выходами, умноженной на производную логистической функции активации (формулу логистической функции активации см. выше):

Тогда, веса выходного слоя после коррекции будут равны:

  • – номер текущей итерации обучения;
  • – величина синаптического веса, соединяющего нейрон с нейроном ;
  • (греческая буква «эта») – коэффициент «скорости обучения», позволяет управлять средней величиной изменения весов;
  • – выход нейрона .

Приведем пример вычислений для синаптического веса :

Случай 2. Корректировка синаптических весов скрытого слоя

Для модели нейронной сети на рис. 1, это будут веса соответствующие слоям и . Определимся, что индексом будем обозначать нейрон из которого выходит синаптический вес, а – нейрон в который входит (обратите внимание на появление новой переменной ):

Введем величину , которая равна:

  • – сумма от по .

Тогда, веса скрытых слоев после коррекции будут равны:

Приведем пример вычислений для синаптического веса :

Для каждого нейрона в скрытом слое должно быть вычислено и подстроены все веса, ассоциированные с этим слоем. Этот процесс повторяется слой за слоем по направлению к входу, пока все веса не будут подкорректированы.

Появление алгоритма обратного распространения ошибки стало знаковым событием в области развития нейронных сетей, так как он реализует вычислительно эффективный метод обучения многослойного персептрона. Будет неправильно утверждать, что алгоритм обратного распространения ошибки предлагает действительно оптимальное решение всех потенциально разрешимым проблем, однако он развеял пессимизм относительно обучения многослойных машин, воцарившийся в результате публикации Минского в 1969 году.

Нейронная сеть — введение
Принцип обучения многослойной нейронной сети с помощью алгоритма обратного распространения

Рассмотрим процесс обучения нейронной сети с использованием алгоритма обратного распространения ошибки (backpropagation).

Для иллюстрации этого процесса используем нейронную сеть состоящую из трёх слоёв и имеющую два входа и один выход:
здесь, автор считает слои по-другому и не учитывает «2 нейрона» входного слоя

Каждый нейрон состоит из двух элементов.
Первый элемент – дендриты — добавляют весовые коэффициенты ко входным сигналам.
Второй элемент – тело — реализует нелинейную функцию, т.н. функцию активации нейрона.
Сигнал е – это взвешенная сумма входных сигналов
— выходной сигнал нейрона.

Чтобы обучить нейронную сеть мы должны подготовить обучающие данные(примеры).
В нашем случае, тренировочные данные состоят из входных сигналов (х1 и х2) и желаемого результата z.
Обучение – это последовательность итераций (повторений).
В каждой итерации весовые коэффициенты нейронов подгоняются с использованием новых данных из тренировочных примеров.
Изменение весовых коэффициентов и составляют суть алгоритма, описанного ниже.

Каждый шаг обучения начинается с воздействия входных сигналов из тренировочных примеров. После этого мы можем определить значения выходных сигналов для всех нейронов в каждом слое сети.
Иллюстрации ниже показывают, как сигнал распространяется по сети.
Символы W(Xm)n представляют вес связи между сетевым входом Xm и нейрона n во входном слое.
Символы y(n) представляют выходной сигнал нейрона n.


Распространение сигнала через скрытый слой.
Символы Wmn представляют весовые множители связей между выходом нейрона m и входом нейрона n в следующем слое.


Распространение сигнала через выходной слой

На следующем шаге алгоритма, выходной сигнала сети y сравнивается с желаемым выходным сигналом z, который хранится в тренировочных данных.
Разница между этими двумя сигналами называется ошибкой d выходного слоя сети.

Невозможно непосредственно вычислить сигнал ошибки для внутренних нейронов, потому что выходные значения этих нейронов, неизвестны.
На протяжении многих лет был неизвестен эффективный метод для обучения многослойной сети.
Только в середине восьмидесятых годов был разработан алгоритм обратного распространения ошибки.
Идея заключается в распространении сигнала ошибки d (вычисленного в шаге обучения) обратно на все нейроны, чьи выходные сигналы были входящими для последнего нейрона.


Весовые коэффициенты Wmn, используемые для обратного распространения ошибки, равны тем же коэффициентам, что использовались во время вычисления выходного сигнала. Только изменяется направление потока данных (сигналы передаются от выхода ко входу).
Этот процесс повторяется для всех слоёв сети. Если ошибка пришла от нескольких нейронов — она суммируются:



Когда вычисляется величина ошибки сигнала для каждого нейрона – можно скорректировать весовые коэффициенты каждого узла ввода(дендрита) нейрона.
В формулах ниже df(e)/de — является производной от функции активации нейрона (чьи весовые коэффициенты корректируются).
как помним, для активационной функции типа сигмоид
производная выражается через саму функцию: , что позволяет существенно сократить вычислительную сложность метода обратного распространения ошибки.

Читать еще:  Чем отличается насыщенный пар от ненасыщенного. Насыщенный и ненасыщенный пар

Вычисление производной необходимо, потому что для корректировки весовых коэффициентов при обучении ИНС с помощью алгоритма обратного распространения, используется метод градиентного спуска.






Коэффициент h влияет на скорость обучения сети.
Есть несколько методов для выбора этого параметра.
Первый способ — начать учебный процесс с большим значением параметра h. Во время коррекции весовых коэффициентов, параметр постепенно уменьшают.
Второй — более сложный метод обучения, начинается с малым значением параметра h. В процессе обучения параметр увеличивается, а затем вновь уменьшается на завершающей стадии обучения.
Начало учебного процесса с низким значением параметра h позволяет определить знак весовых коэффициентов.

Обратное распространение ошибки

Метод обратного распространения ошибок (англ. backpropagation) — метод вычисления градиента, который используется при обновлении весов в нейронной сети.

Изначально веса задаются случайно. Затем, нейрон обучается с помощью тренировочного множества, которое в этом случае состоит из множества троек [math](x_1, x_2, t)[/math] где [math]x_1[/math] и [math]x_2[/math] — это входные данные сети и [math]t[/math] — правильный ответ. Начальная сеть, приняв на вход [math]x_1[/math] и [math]x_2[/math] , вычислит ответ [math]y[/math] , который вероятно отличается от [math]t[/math] . Общепринятый метод вычисления несоответствия между ожидаемым [math]t[/math] и получившимся [math]y[/math] ответом — квадратичная функция потерь:

[math]E=(t-y)^2, [/math] где [math]E[/math] ошибка. В качестве примера, обучим сеть на объекте [math](1, 1, 0)[/math] , таким образом, значения [math]x_1[/math] и [math]x_2[/math] равны 1, а [math]t[/math] равно 0. Построим график зависимости ошибки [math]E[/math] от действительного ответа [math]y[/math] , его результатом будет парабола. Минимум параболы соответствует ответу [math]y[/math] , минимизирующему [math]E[/math] . Если тренировочный объект один, минимум касается горизонтальной оси, следовательно ошибка будет нулевая и сеть может выдать ответ [math]y[/math] равный ожидаемому ответу [math]t[/math] . Следовательно, задача преобразования входных значений в выходные может быть сведена к задаче оптимизации, заключающейся в поиске функции, которая даст минимальную ошибку.

В таком случае, выходное значение нейрона — взвешенная сумма всех его входных значений:

где [math]w_1[/math] и [math]w_2[/math] — веса на ребрах, соединяющих входные вершины с выходной. Следовательно, ошибка зависит от весов ребер, входящих в нейрон. И именно это нужно менять в процессе обучения. Распространенный алгоритм для поиска набора весов, минимизирующего ошибку — градиентный спуск. Метод обратного распространения ошибки используется для вычисления самого «крутого» направления для спуска.

Метод градиентного спуска включает в себя вычисление дифференциала квадратичной функции ошибки относительно весов сети. Обычно это делается с помощью метода обратного распространения ошибки. Предположим, что выходной нейрон один, (их может быть несколько, тогда ошибка — это квадратичная норма вектора разницы) тогда квадратичная функция ошибки:

[math]E = tfrac 1 2 (t — y)^2,[/math] где [math]E[/math] — квадратичная ошибка, [math]t[/math] — требуемый ответ для обучающего образца, [math]y[/math] — действительный ответ сети.

Множитель [math]textstylefrac<1><2>[/math] добавлен чтобы предотвратить возникновение экспоненты во время дифференцирования. На результат это не повлияет, потому что позже выражение будет умножено на произвольную величину скорости обучения (англ. learning rate).

Читать еще:  Русско японская война 1904 1905 гг закончилась. Русско-японская война кратко

Для каждого нейрона [math]j[/math] , его выходное значение [math]o_j[/math] определено как

[math]o_j = varphi(text_j) = varphileft(sum_^n w_o_kright).[/math]

Входные значения [math]text_j[/math] нейрона — это взвешенная сумма выходных значений [math]o_k[/math] предыдущих нейронов. Если нейрон в первом слое после входного, то [math]o_k[/math] входного слоя — это просто входные значения [math]x_k[/math] сети. Количество входных значений нейрона [math]n[/math] . Переменная [math]w_[/math] обозначает вес на ребре между нейроном [math]k[/math] предыдущего слоя и нейроном [math]j[/math] текущего слоя.

Функция активации [math]varphi[/math] нелинейна и дифференцируема. Одна из распространенных функций активации — сигмоида:

[math] varphi(z) = frac 1 <1+e^<-z>>[/math]

у нее удобная производная:

Находим производную ошибки [ править ]

Вычисление частной производной ошибки по весам [math]w_[/math] выполняется с помощью цепного правила:

Только одно слагаемое в [math]text_j[/math] зависит от [math]w_[/math] , так что

Если нейрон в первом слое после входного, то [math]o_i[/math] — это просто [math]x_i[/math] .

Производная выходного значения нейрона [math]j[/math] по его входному значению — это просто частная производная функции активации (предполагается что в качестве функции активации используется сигмоида):

По этой причине данный метод требует дифференцируемой функции активации. (Тем не менее, функция ReLU стала достаточно популярной в последнее время, хоть и не дифференцируема в 0)

Первый множитель легко вычислим, если нейрон находится в выходном слое, ведь в таком случае [math]o_j = y[/math] и

Тем не менее, если [math]j[/math] произвольный внутренний слой сети, нахождение производной [math]E[/math] по [math]o_j[/math] менее очевидно.

Если рассмотреть [math]E[/math] как функцию, берущую на вход все нейроны [math]L = [/math] получающие на вход значение нейрона [math]j[/math] ,

и взять полную производную по [math]o_j[/math] , то получим рекурсивное выражение для производной:

Следовательно, производная по [math]o_j[/math] может быть вычислена если все производные по выходным значениям [math]o_ell[/math] следующего слоя известны.

Если собрать все месте:

Чтобы обновить вес [math]w_[/math] используя градиентный спуск, нужно выбрать скорость обучения, [math]eta gt 0[/math] . Изменение в весах должно отражать влияние [math]E[/math] на увеличение или уменьшение в [math]w_[/math] . Если [math]frac> gt 0[/math] , увеличение [math]w_[/math] увеличивает [math]E[/math] ; наоборот, если [math]frac> lt 0[/math] , увеличение [math]w_[/math] уменьшает [math]E[/math] . Новый [math]Delta w_[/math] добавлен к старым весам, и произведение скорости обучения на градиент, умноженный на [math]-1[/math] , гарантирует, что [math]w_[/math] изменения будут всегда уменьшать [math]E[/math] . Другими словами, в следующем уравнении, [math]- eta frac>[/math] всегда изменяет [math]w_[/math] в такую сторону, что [math]E[/math] уменьшается:

[math] Delta w_ = — eta frac> = — eta delta_j o_i[/math]

  • [math]eta[/math] — скорость обучения
  • [math]alpha[/math] — коэффициент инерциальности для сглаживания резких скачков при перемещении по поверхности целевой функции
  • [math]_^[/math] — обучающее множество
  • [math]textrm[/math] — количество повторений
  • [math]network(x)[/math] — функция, подающая x на вход сети и возвращающая выходные значения всех ее узлов
  • [math]layers[/math] — количество слоев в сети
  • [math]layer_i[/math] — множество нейронов в слое i
  • [math]output[/math] — множество нейронов в выходном слое

Несмотря на многочисленные успешные применения обратного распространения, оно не является универсальным решением. Больше всего неприятностей приносит неопределённо долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.

Паралич сети [ править ]

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших выходных значениях, а производная активирующей функции будет очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть.

Локальные минимумы [ править ]

Градиентный спуск с обратным распространением ошибок гарантирует нахождение только локального минимума функции; также, возникают проблемы с пересечением плато на поверхности функции ошибки.

Источники:

http://www.aiportal.ru/articles/neural-networks/back-propagation.html
http://robocraft.ru/blog/algorithm/560.html
http://neerc.ifmo.ru/wiki/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B5_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BE%D1%88%D0%B8%D0%B1%D0%BA%D0%B8

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector