Курсовая работа: Автокорреляционная функция Примеры расчётов. Автокорреляционная функция и аддитивная модель временного ряда

Автокорреляционная функция (АКФ) характеризует степень корреляционной связи между отдельными значениями наблюдений, представленными в виде случайного процесса и расположенными на некотором удалении друг от друга.

Применительно к геофизическим данным АКФ представляет характеристику связи между значениями поля, отстоящими друг от друга на m — дискретов, т.е. дискретов по x или по t . АКФ является функцией аргумента или , где — шаг по профилю, — шаг по трассе сейсмограммы, т.е. .

АКФ рассчитывается по формуле:

(4.1)

где — значение поля в i -той точке профиля (трассы, скважины); n – число точек наблюдений; m – интервал, принимающий последовательно значения , которые выражают расстояния между значениями поля и ; — среднее значение поля по профилю, трассе и т.д.

Для m =1, сумма в выражении 4.1 представляет собой сумму произведений центрированных, значений поля соседних точек профиля:

здесь , то есть центрированное значение поля на i — ом пикете профиля;

Для m =2, сумма в выражении 4.1 представляет собой сумму произведений центрированных значений поля, удаленных друг от друга на один пикет:

Для любого m= k , (k =0.

4.Два случайных процесса F 1 = и F 2 = отличающиеся только постоянным множителем k, имеют один и тот же вид нормированной автокорреляционной функции R н (m).

5.Два случайных процесса F 1 = и F 2 = смещенные относительно друг друга на постоянную величину k, имеют один и тот же вид нормированной автокорреляционной функции R н (m).

Анализируя выражения 4.1 и 4.5 можно сделать вывод о том, что нормированные значения автокорреляционной функции R н. (m) есть не что иное, как коэффициент корреляции, рассчитанный для точек удаленных друг от друга на m пикетов. Таким образом, значения корреляционной функции, для конкретного аргумента m показывает насколько значения поля, удаленные друг от друга на m пикетов, коррелированны между собой. Так, если R(5)=0.85 , то это свидетельствует о том, что значения поля, удаленные друг от друга на 5 пикетов, в целом, достаточно коррелированны, если R(9)=0.05 , то значения поля удаленные на 9 пикетов практически независимы (некоррелированны). Наконец, если, например, R(13)=-0.9 , то между значениями поля, отстоящими друг от друга на 13 пикетов, существует сильная обратная корреляционная связь. Случайный процесс, для которого даже при единичном смещении R(1) 1 равных промежутков, называемых позициями. На каждой из позиций сигнал может находиться в одном из даух состояний, которым отвечают числа +1 и -1.

Рис. 3.6 поясняет некоторые способы формирования многопозиционного сложного сигнала. Для определенности здесь М = 3.

Видно, что физический облик дискретного сигнала может быть различным.

Рис. 3.6. Трехпозиционный сложный сигнал: а — амплитудное кодирование; б — фазовое кодирование

В случае а символу соответствует положительное значение высоты видеоимпульса, передаваемого на соответствующей позиции; символу -1 отвечает отрицательное значение — . Говорят, что при этом реализовано амплитудное кодирование сложного сигнала. В случае б происходит фазовое кодирование. Для передачи символа +1 на соответствующей позиции генерируется отрезок гармонического сигнала с нулевой начальной фазой. Чтобы отобразить символ -1, используется отрезок синусоиды такой же длительности и с той же частотой, но его фаза получает дополнительный сдвиг на 180°.

Несмотря на различие графиков этих даух сигйалов, между ними, в сущности, можно установить полное тождество с точки зрения их математических моделей. Действительно, модель любого такого сигнала — это последовательность чисел в которой каждый символ принимает одно из даух возможных значений +1. Для удобства договоримся в дальнейшем дополнять такую последовательность нулями на «пустых» позициях, где сигнал не определен. При этом, например, развернутая форма записи дискретного сигнала <1 1, -1, 1>будет иметь вид

Важнейшая операция при обработке дискретных сигналов состоит в сдвиге такого сигнала на некоторое число позиций относительно исходного положения без. изменения его формы. В качестве примера ниже представлен некоторый исходный сигнал (первая строка) и его копии (последующие строки), сдвинутые на 1, 2 и 3 позиции в сторону запаздывания:

Дискретная автокорреляционная функция.

Постараемся так обобщить формулу (3.15), чтобы можно было вычислять дискретный аналог АКФ применительно к многопозиционным сигналам. Ясно, что операцию интегрирования здесь следует заменить суммированием, а вместо переменной использовать целое число (положительное или отрицательное), указывающее, на сколько позиций сдвинута копия относительно исходного сигнала.

Так как в «пустых» позициях математическая модель сигнала содержит нули, запишем дискретную АКФ в виде

Эта функция целочисленного аргумента , естественно, обладает многими уже известными свойствами обычной автокорреляционной функции. Так, легко видеть, что дискретная АКФ четна:

При Пулевом сдвиге эта АКФ определяет энергию дискретного сигнала:

Некоторые примеры.

Для иллюстрации сказанного вычислим дискретную АКФ трехпозиционного сигнала с одинаковыми значениями на каждой позиции: Выпишем этот сигнал вместе с копиями, сдвинутыми на 1, 2 и 3 позиции:

Читать еще:  Сибирия 3 уголь. Сибирь (Syberia) - полное прохождение игры на Андроид, айфоне и компьютере с картинками

Видно, что уже при сигнал и копия перестают накладываться друг на друга, так что произведения, входящие в формулу (3.29), становятся равными нулю при . Вычисляя суммы, получаем

Боковые лепестки автокорреляционной функции линейно спадают с ростом номера и, подобно тому, как в случае автокорреляционной функции трех аналоговых видеоимпульсов.

Рассмотрим дискретный сигнал, отличающийся от предыдущего знаком отсчета на второй позиции:

Поступая аналогичным образом, вычислим для этого сигнала значения дискретной автокорреляционной функции:

Можно обнаружить, что первый боковой лепесток изменяет свой знак, оставаясь неизменным по абсолютному значению.

Наконец, рассмотрим трехпозиционный дискретный сигнал с математической моделью вида

Его автокорреляционная функция такова:

Из трех изученных здесь дискретных сигналов именно третий наиболее совершенен с точки зрения корреляционных свойств, поскольку при этом реализуется наименьший уровень боковых лепестков автокорреляционной функции.

Сигналы Баркера.

Дискретные сигналы с наилучшей структурой автокорреляционной функции явились в 50-60-е годы объектом интенсивных исследований специалистов в области теоретической радиотехники и прикладной математики. Были найдены целые классы сигналов с совершенными корреляционными свойствами. Среди них большую известность получили так называемые сигналы (коды) Баркера. Эти сигналы обладают уникальным свойством: независимо от числа позиции М значения их автокорреляционных функций, вычисляемые по формуле (3.29), при всех не превышают единицы. В то же время энергия этих сигналов, т. е. величина численно равна М.

Сигналы Баркера удается реализовать лишь при числе позиций М = 2, 3, 4, 5, 7, 11 и 13. Случай является тривиальным. Сигнал Баркера при был исследован нами в конце предыдущего пункта. Математические модели сигналов Баркера и отвечающие им автокорреляционные функции приведены в табл. 3.2.

Таблица 3.2 Модели сигналов Баркера

Для иллюстрации на рис. 3.7 приведен вид наиболее часто используемого 13-позиционного сигнала Баркера при даух способах кодирования, а также графическое представление его АКФ.

Рис. 3.7. Сигнал Баркера при М = 13: а — амплитудное кодирование; б — фазовое кодирование; в — автокорреляционная функция

Отметим в заключение, что исследование некоторых свойств дискретных сигналов и их автокорреляционных функций, проведенное в данной главе, имеет предварительный, вводный характер. Систематическое изучение этого круга вопросов будет предпринято в гл. 15.

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда. Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Некоторые авторы считают целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше .

Отметим два важных свойства коэффициента автокорреляции. Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют автокорреляционной функцией временного рада. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т. е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты () и циклической (сезонной) компоненты ().

Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания. Простейший подход — расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой , сезонной и случайной компонент. Общий вид мультипликативный модели выглядит так:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой , сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Читать еще:  Сонник толкование к чему снится выпадение волос. К чему снится выпадение волос

Построение аддитивной и мультипликативной моделей сводится к расчету значений и для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1. Выравнивание исходного ряда методом скользящей средней.

2. Расчет значений сезонной компоненты .

3. Устранение сезонной компоненты из исходных уровней ряда и получение выравненных данных в аддитивной или в мультипликативной модели.

4. Аналитическое выравнивание уровней или и расчет значений с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений или .

6. Расчет абсолютных и/или относительных ошибок.

Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

Пример решения задачи

Условие задачи

Имеются условные данные об объемах потребления электроэнергии жителями региона за 16 кварталов.

1. Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.

2. Построить аддитивную модель временного ряда (для нечетных вариантов) или мультипликативную модель временного ряда (для четных вариантов).

3. Сделать прогноз на 2 квартала вперед.

Чтобы решение задачи по эконометрике было максимально точным и верным, многие недорого заказывают контрольную работу на этом сайте. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить контрольную работу по эконометрике.

Автокорреляционная функция. Примеры расчётов

Общая характеристика и порядок определения коэффициента корреляции, методика и этапы его оценки. Описание автокорреляционных функций. Сущность критерия Дарбина-Уотсона. Примеры практических расчетов с помощью макроса Excel «Автокорреляционная функция».

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

«Автокорреляционная функция. Примеры расчётов»

Введение


В общей сложности, периодическая зависимость может быть формально определена как корреляционная зависимость порядка n между каждым i-м элементом ряда и (i-n) — м элементом. Ее можно измерять с помощью автокорреляции (т.е. корреляции между самими членами ряда); n обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если оплошность измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые n временных единиц.


Периодические составляющие временного ряда могут быть отысканы с помощью коррелограммы. Коррелограмма (автокоррелограмма) представляет численно и графически автокорреляционную функцию. Другими словами, коэффициенты автокорреляции для последовательности шагов из определенного диапазона. На коррелограмме просто отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные автокорреляции [6, 207].


При изучении коррелограмм следует знать следующее: автокорреляции последовательных лагов формально зависимы между собой.


Рассмотрим пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).


Цель работы:


1. Дать основные теоретические сведения


2. Дать примеры расчета АКФ


1. Теоретические сведения


1.1 Коэффициент автокорреляции и его оценка

Для совершенной характеристики случайного движения недостаточно его математического ожидания и дисперсии. Вероятность того, что на определенном месте возникнут те или иные конкретные значения зависит от того, какие роли случайная величина получила раньше или будет получать позже.

Другими словами, существует поле рассеяния пар значений x(t), x (t+n) временного ряда, где n — постоянный интервал или задержка, которая характеризует зависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации —

g (n) = E[(x(t) — m) (x (t + n) — m)] —

r (n) = E[(x(t) — m) (x (t + n) — m)] / D,

где m и D — математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p (x(t1), x(t2)).

откуда вытекает, что r (0) = 1. В тех же условиях стационарности множитель корреляции r (n) между двумя значениями временного ряда зависит лишь от величины временного интервала n и не зависит от самих моментов наблюдений t. Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (n) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой n

Главным из различных коэффициентов автокорреляции является первый — r1, измеряющий тесноту связи между уровнями x(1), x(2),…, x (n -1) и x(2), x(3),…, x(n).

Распределение коэффициентов автокорреляции неизвестно, поэтому для оценки их правдивости иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику [4, 112]

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

1.2 Автокорреляционные функции

Последовательность коэффициентов корреляции rn, где n = 1, 2,…, n, как функция интервала n между наблюдениями называется автокорреляционной функцией.

Вид выборочной автокорреляционной функции тесно связан со структурой ряда.

· Автокорреляционная функция rn для «белого шума», при n >0, также образует стационарный временной ряд со средним значением 0.

· Для стационарного ряда АКФ быстро убывает с ростом n. При наличии отчетливого тренда автокорреляционная функция приобретает характерный вид очень медленно спадающей кривой [3, 268].

· В случае выраженной сезонности в графике АКФ также присутствуют выбросы для запаздываний, кратных периоду сезонности, но эти выбросы могут быть завуалированы присутствием тренда или большой дисперсией случайной компоненты.

Рассмотрим примеры автокорреляционной функции:

· на рис. 1 представлен график АКФ, характеризующегося умеренным трендом и неясно выраженной сезонностью;

· рис. 2 демонстрирует АКФ ряда, характеризующегося феноменальной сезонной детерминантой;

· практически незатухающий график АКФ ряда (рис. 3) свидетельствует о наличии отчетливого тренда.

В общем случае можно предполагать, что в рядах, состоящих из отклонений от тренда, автокорреляции нет. Например, на рис. 4 представлен график АКФ для остатков, полученных от сглаживания ряда, очень напоминающий процесс «белого шума». Однако нередки случаи, когда остатки (случайная компонента h) могут оказаться автокоррелированными, например, по следующим причинам [1, 172]:

· в детерминированных или стохастических моделях динамики не учтен существенный фактор фактически, нарушен принцип омнипотентности

· в модели не учтено несколько несущественных факторов, взаимное влияние которых оказывается существенным вследствие совпадения фаз и направлений их изменения;

· выбран неправильный тип модели (нарушен принцип контринтуитивности);

· случайная компонента имеет специфическую структуру.

1.3 Критерий Дарбина-Уотсона

Критерий Дарбина-Уотсона (Durbin, 1969) представляет собой распространенную статистику, предназначенную для тестирования наличия автокорреляции остатков первого порядка после сглаживания ряда или в регрессионных моделях.

Численное значение коэффициента равно

d = [(e(2) — e(1)) 2 +… + (e(n) — e (n -1)) 2 ]/[e(1) 2 +… + e(n) 2 ],

где e(t) — остатки.

Возможные значения критерия находятся в интервале от 0 до 4, причем табулированы его табличные пороговые значения для разных уровней значимости (Лизер, 1971).

Значение d близко к величине 2*(1 — r1), где r — выборочный коэффициент автокорреляции для остатков. Соответственно, идеальное значение статистики — 2 (автокорреляция отсутствует). Меньшие значения соответствуют положительной автокорреляции остатков, большие — отрицательной [2, 193].

Например, после сглаживания ряда ряд остатков имеет критерий d = 1.912. Аналогичная статистика после сглаживания ряда — d = 1.638 — свидетельствует о некоторой автокоррелированности остатков.

2. Примеры практических расчетов с помощью макроса Excel «Автокорреляционная функция»

Задача №5. Построение автокорреляционной функции

Имеются условные данные об объемах потребления электроэнергии yt жителями региона за 16 кварталов.

Требуется:

1. Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.

2. Построить аддитивную модель временного ряда.

3. Сделать прогноз на 2 квартала вперед.

Решение:

1. Рассчитаем коэффициент автокорреляции уровней ряда первого порядка, то есть между соседними уровнями ряда yt и yt-1 (лаг = 1), и измерим тесноту связи между объёмом потребления электроэнергии в текущем и предыдущем году.

Для этого составим таблицу расчётных данных.

Расчёт коэффициента автокорреляции первого порядка для временного ряда объемов потребления электроэнергии жителями региона:

Рассчитаем выборочные средние:

Определим коэффициент автокорреляции уровней ряда первого порядка:

Полученное значение свидетельствует об очень слабой зависимости текущих уровней ряда от непосредственно им предшествующих уровней.

Рассчитаем коэффициент автокорреляции 2-го порядка.

Коэффициент автокорреляции уровней ряда первого порядка:

Продолжив расчёты аналогичным образом, получим автокорреляционную функцию этого ряда. Её значения приведены в таблице:

Анализ значений автокорреляционной функции позволяет сделать вывод о наличии в изучаемом временном ряде линейной тенденции и сезонных колебаний периодичностью в 4 квартала.

2. Построим аддитивную модель временного ряда.
Общий вид аддитивной модели следующий:
Y = T + S + E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты аддитивной модели временного ряда.
Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1) просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объёмы потребления электроэнергии (гр. 3);

2) разделив полученные суммы на 4, найдём скользящие средние (гр. 4). Отметим, что полученные таким образом выравненные значения уже не содержат сезонной компоненты;

3) приведём эти значения в соответствие с фактическими моментами времени, для чего найдём средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр.5).

Расчёт оценок сезонной компоненты в аддитивной модели

Шаг 2. Рассчитаем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6). Используем эти оценки для расчета значений сезонной компоненты S. Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты Si. В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Источники:

http://www.interesnyekartinki.ru/kursovaya-rabota-avtokorrelyacionnaya-funkciya-primery-rasch-tov.html
http://knowledge.allbest.ru/emodel/3c0b65635a3bc68a5d53a89421216d27_0.html
http://ecson.ru/economics/econometrics/zadacha-5.postroenie-avtokorrelyatsionnoy-funktsii.html

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector