Однородное тригонометрическое уравнение 1 степени. Однородные тригонометрические уравнения

Однородные тригонометрические уравнения

Разделы: Математика

«Величие человека в его способности мыслить».
Блез Паскаль.

Цели урока:

1) Обучающие – познакомить учащихся с однородными уравнениями, рассмотреть методы их решения, способствовать формированию навыков решения ранее изученных видов тригонометрических уравнений.

2) Развивающие – развивать творческую активность учащихся, их познавательную деятельность, логическое мышление, память, умение работать в проблемной ситуации, добиваться умения правильно, последовательно, рационально излагать свои мысли, расширить кругозор учащихся, повышать уровень их математической культуры.

3) Воспитательные – воспитывать стремление к самосовершенствованию, трудолюбие, формировать умение грамотно и аккуратно выполнять математические записи, воспитывать активность, содействовать побуждению интереса к математике.

Тип урока: комбинированный.

Оборудование:

  1. Перфокарты для шести учащихся.
  2. Карточки для самостоятельной и индивидуальной работы учащихся.
  3. Стенды «Решение тригонометрических уравнений», «Числовая единичная окружность».
  4. Электрифицированные таблицы по тригонометрии.
  5. Презентация к уроку (Приложение 1).

Ход урока

1. Организационный этап (2 минуты)

Взаимное приветствие; проверка подготовленности учащихся к уроку (рабочее место, внешний вид); организация внимания.

Учитель сообщает учащимся тему урока, цели (слайд 2) и поясняет, что во время урока будет использоваться тот раздаточный материал, который находится на партах.

2. Повторение теоретического материала (15 минут)

Задания на перфокартах (6 человек). Время работы по перфокартам – 10 мин (Приложение 2)

Решив задания, учащиеся узнают, где применяются тригонометрические вычисления. Получаются такие ответы: триангуляция (техника, позволяющая измерять расстояния до недалеких звезд в астрономии), акустика, УЗИ, томография, геодезия, криптография.

  1. Какие уравнения называются тригонометрическими?
  2. Какие виды тригонометрических уравнений вы знаете?
  3. Какие уравнения называются простейшими тригонометрическими уравнениями?
  4. Какие уравнения называются квадратными тригонометрическими?
  5. Сформулировать определение арксинуса числа а.
  6. Сформулировать определение арккосинуса числа а.
  7. Сформулировать определение арктангенса числа а.
  8. Сформулировать определение арккотангенса числа а.

Игра «Отгадайте зашифрованное слово»

Когда-то Блез Паскаль сказал, что математика – наука настолько серьёзная, что нельзя упускать случая, сделать её немного более занимательной. Поэтому я предлагаю поиграть. Решив примеры, определите последовательность цифр, по которой составлено зашифрованное слово. По латыни это слово означает «синус». (слайд 3)

4) tg (arc cos (1/2))

Ответ: «Изгиб»

Игра «Рассеянный математик»

На экран проектируются задания для устной работы:

Проверьте правильность решения уравнений. (правильный ответ появляется на слайде после ответа учащегося). (слайд 4)

Ответы с ошибками

Правильные ответы

х = (-1)n arcsin1/3+ 2πn

cos x = 1/2, х = ±π/3+2πn

Проверка домашнего задания.

Преподаватель установливает правильность и осознанность выполнения домашнего задания всеми учащимися; выявляет пробелы в знаниях; совершенствует знания, умения и навыки учащихся в области решения простейших тригонометрических уравнений.

1 уравнение. Учащийся комментирует решение уравнения, строки которого появляются на слайде в порядке следования комментария). (слайд 6)

2 уравнение. Решение записывается учащимся на доске.

2 sin 2 x + 3 cosx = 0.

3. Актуализация новых знаний (3 минуты)

Учащиеся по просьбе учителя вспоминают способы решения тригонометрических уравнений. Они выбирают те уравнения, которые уже умеют решать, называют способ решения уравнения и получившийся результат. Ответы появляются на слайде. (слайд 7) .

Введение новой переменной:

№1. 2sin 2 x – 7sinx + 3 = 0.

Пусть sinx = t, тогда:

Разложение на множители:

№2. 3sinx cos4x – cos4x = 0;

сos4x(3sinx – 1) = 0;

cos4x = 0 или 3 sinx – 1 = 0; …

№3. 2 sinx – 3 cosx = 0,

№4. 3 sin 2 x – 4 sinx cosx + cos 2 x = 0.

Преподаватель: Последние два вида уравнений вы решать еще не умеете. Оба они одного вида. Их нельзя свести к уравнению относительно функций sinx или cosx. Называются однородными тригонометрическими уравнениями. Но только первое – однородное уравнение первой степени, а второе – однородное уравнение второй степени. Сегодня на уроке предстоит познакомиться с такими уравнениями и научиться их решать.

4. Объяснение нового материала (25 минут)

Преподаватель дает учащимся определения однородных тригонометрических уравнений, знакомит со способами их решения.

Определение. Уравнение вида a sinx + b cosx =0, где a ≠ 0, b ≠ 0 называется однородным тригонометрическим уравнением первой степени. (слайд 8)

Примером такого уравнения является уравнение №3. Выпишем общий вид уравнения и проанализируем его.

Читать еще:  Площадь поверхности вращения вокруг оси oy формула. Вычисление площади поверхности вращения

а sinx + b cosx = 0.

Если cosx = 0, то sinx = 0.

– Может ли получиться такая ситуация?

– Нет. Получили противоречие основному тригонометрическому тождеству.

Значит, cosx ≠ 0. Выполним почленное деление на cosx:

tgx = –b / а – простейшее тригонометрическое уравнение.

Вывод: Однородные тригонометрические уравнения первой степени решаются делением обеих частей уравнения на cosx (sinx).

Например: 2 sinx – 3 cosx = 0,

х = arctg (3/2) +πn, n ∈Z.

Определение. Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x = 0 , где a ≠ 0, b ≠ 0, c ≠ 0 называется тригонометрическим уравнением второй степени. (слайд 8)

Примером такого уравнения является уравнение №4. Выпишем общий вид уравнения и проанализируем его.

a sin 2 x + b sinx cosx + c cos 2 x = 0.

Если cosx = 0, то sinx = 0.

Опять получили противоречие основному тригонометрическому тождеству.

Значит, cosx ≠ 0. Выполним почленное деление на cos 2 x:

а tg 2 x + b tgx + c = 0 – уравнение, сводящееся к квадратному.

Вывод: Однородные тригонометрические уравнения второй степени решаются делением обеих частей уравнения на cos 2 x (sin 2 x).

Например: 3 sin 2 x – 4 sinx cosx + cos 2 x = 0.

Т.к. cos 2 x ≠ 0, то

3tg 2 x – 4 tgx + 1 = 0 (Предложить ученику выйти к доске и дорешать уравнение самостоятельно).

Замена: tgx = у. 3у 2 – 4 у + 1 = 0

tgx = 1 или tgx = 1/3

x = arctg (1/3) + πn, n ∈Z.

х = arctg1 + πn, n ∈Z.

5. Этап проверки понимания учащимися нового материала (1 мин.)

Выберите лишнее уравнение:

sinx = 2cosx; 2sinx + cosx = 2;

√3sinx + cosx = 0; sin 2 x – 2 sinx cosx + 4cos 2 x = 0;

4cosx + 5sinx = 0; √3sinx – cosx = 0.

6. Закрепление нового материала (24 мин).

Учащиеся вместе с отвечающими у доски решают уравнения на новый материал. Задания написаны на слайде в виде таблицы. При решении уравнения открывается соответствующая часть картинки на слайде. В результате выполнения 4-х уравнений перед учащимися открывается портрет математика, оказавшего значительное влияние на развитие тригонометрии. (ученики узнают портрет Франсуа Виета – великого математика, внесшего большой вклад в тригонометрию, открывшего свойство корней приведенного квадратного уравнения и занимавшегося криптографией). (слайд 10)

1) √3sinx + cosx = 0,

х = arctg (–1/√3) + πn, n ∈Z.

2) sin 2 x – 10 sinx cosx + 21cos 2 x = 0.

Т.к. cos 2 x ≠ 0, то tg 2 x – 10 tgx + 21 = 0

у 2 – 10 у + 21 = 0

tgx = 7 или tgx = 3

х = arctg7 + πn, n ∈Z

х = arctg3 + πn, n ∈Z

3) sin 2 2x – 6 sin2x cos2x + 5cos 2 2x = 0.

Т.к. cos 2 2x ≠ 0, то 3tg 2 2x – 6tg2x +5 = 0

tg2x = 5 или tg2x = 1

2х = arctg5 + πn, n ∈Z

х = 1/2 arctg5 + π/2 n, n ∈Z

2х = arctg1 + πn, n ∈Z

х = π/8 + π/2 n, n ∈Z

4) 6sin 2 x + 4 sin(π-x) cos(2π-x) = 1.

6sin 2 x + 4 sinx cosx = 1.

6sin 2 x + 4 sinx cosx – sin 2 x – cos 2 x = 0.

5sin 2 x + 4 sinx cosx – cos 2 x = 0.

Т.к. cos 2 x ≠0, то 5tg 2 x + 4 tgx –1 = 0

tg x = 1/5 или tg x = –1

х = arctg1/5 + πn, n ∈Z

х = arctg(–1) + πn, n ∈Z

Дополнительно (на карточке):

Решить уравнение и, выбрав один вариант из четырех предложенных, отгадать имя математика, который вывел формулы приведения:

2sin 2 x – 3 sinx cosx – 5cos 2 x = 0.

Варианты ответов:

х = arctg2 + 2πn, n ∈Z х = –π/2 + πn, n ∈Z – П.Чебышев

х = arctg 12,5 + 2πn, n ∈Z х = –3π/4 + πn, n ∈Z – Евклид

х = arctg 5 + πn, n ∈Z х = –π/3 + πn, n ∈Z – Софья Ковалевская

х = arctg2,5 + πn, n ∈Z х = –π/4 + πn, n ∈Z – Леонард Эйлер

Правильный ответ: Леонард Эйлер.

7. Дифференцированная самостоятельная работа ( 8 мин.)

Великий математик и философ более 2500 лет назад подсказал способ развития мыслительных способностей. «Мышление начинается с удивления» – сказал он. В правильности этих слов мы сегодня неоднократно убеждались. Выполнив самостоятельную работу по 2-м вариантам, вы сможете показать, как усвоили материал и узнать имя этого математика. Для самостоятельной работы используйте раздаточный материал, который находится у вас на столах. Вы можете сами выбрать одно из трех предложенных уравнений. Но помните, что решив уравнение, соответствующее желтому цвету, вы сможете получить только «3»,решив уравнение, соответствующее зеленому цвету – «4», красному цвету – «5». (Приложение 3)

Какой бы уровень сложности не выбрали учащиеся, после правильного решения уравнения у первого варианта получается слово «АРИСТ», у второго – «ОТЕЛЬ». На слайде получается слово: «АРИСТ—ОТЕЛЬ». (слайд 11)

Листочки с самостоятельной работой сдаются на проверку. (Приложение 4)

8. Запись домашнего задания (1 мин)

Читать еще:  Где больше всего достопримечательностей в греции. Что посетить в Греции – самые интересные и необычные достопримечательности эллинистического мира

Д/з: §7.17. Составить и решить 2 однородных уравнения первой степени и 1 однородное уравнение второй степени (используя для составления теорему Виета). (слайд 12)

9. Подведение итогов урока, выставление оценок (2 минуты)

Учитель еще раз обращает внимание, на те типы уравнений и те теоретические факты, которые вспоминали на уроке, говорит о необходимости выучить их.

Учащиеся отвечают на вопросы:

  1. С каким видом тригонометрических уравнений мы познакомились?
  2. Как решаются эти уравнения?

Учитель отмечает наиболее успешную работу на уроке отдельных учащихся, выставляет отметки.

Тема урока: «Однородные тригонометрические уравнения» (10-й класс)

Курс повышения квалификации за 340 рублей!

Эмоциональное выгорание педагогов. Профилактика и способы преодоления

Тема урока: «Однородные тригонометрические уравнения»

Цель: ввести понятие однородных тригонометрических уравнений I и II степени; сформулировать и отработать алгоритм решения однородных тригонометрических уравнений I и II степени; научить учащихся решать однородные тригонометрических уравнений I и II степени; развивать умение выявлять закономерности, обобщать; стимулировать интерес к предмету, развивать чувство солидарности и здорового соперничества.

Тип урока: урок формирования новых знаний.

Форма проведения: работа в группах.

Оборудование: компьютер, мультимедийная установка

Приветствие учащихся, мобилизация внимания.

На уроке рейтинговая система оценки знаний (учитель поясняет систему оценки знаний, заполнение оценочного листа независимым экспертом, выбранным учителем из числа учащихся). Урок сопровождается презентацией. Приложение 1 .

Актуализация опорных знаний.

Домашняя работа проверяется и оценивается независимым экспертом и консультантами до урока и заполняется оценочный лист.

Учитель подводит итог выполнения домашнего задания.

Учитель: Мы продолжаем изучение темы “Тригонометрические уравнения”. Сегодня на уроке мы познакомимся с вами с еще одним видом тригонометрических уравнений и методами их решения и поэтому повторим изученное. Все виды тригонометрических уравнений при решении сводятся к решению простейших тригонометрических уравнений.

Проверяется индивидуальное домашнее задание, выполняемое в группах. Защита презентации “Решения простейших тригонометрических уравнений”

(Оценивается работа группы независимым экспертом)

Учитель: нам предстоит работа по разгадыванию кроссворда. Разгадав его, мы узнаем название нового вида уравнений, которые научимся решать сегодня на уроке.

Вопросы спроецированы на доску. Учащиеся отгадывают, независимый эксперт заносит в оценочный лист баллы отвечающим учащимся.

Разгадав кроссворд, ребята прочитают слово “однородные”.

Усвоение новых знаний.

Учитель: Тема урока “Однородные тригонометрические уравнения”.

Запишем тему урока в тетрадь. Однородные тригонометрические уравнения бывают первой и второй степени.

Запишем определение однородного уравнения первой степени. Я на примере показываю решение такого вида уравнения, вы составляете алгоритм решения однородного тригонометрического уравнения первой степени.

Уравнение вида аsinx + bcosx = 0 называют однородным тригонометрическим уравнение первой степени.

Рассмотрим решение уравнения, когда коэффициенты а и в отличны от 0.

Пример: sinx + cosx = 0

Разделив обе части уравнения почленно на cosx, получим

Внимание! Делить на 0 можно лишь в том случае, если это выражение нигде не обращается в 0. Анализируем. Если косинус равен 0, то получается и синус будет равен 0, учитывая, что коэффициенты отличны от 0, но мы знаем, что синус и косинус обращаются в нуль в различных точках. Поэтому эту операцию производить можно при решении такого вида уравнения.

Алгоритм решения однородного тригонометрического уравнения первой степени: деление обеих частей уравнения на cosx, cosx

Уравнение вида аsin mx + bcos mx = 0 тоже называют однородным тригонометрическим уравнение первой степени и решат также деление обеих частей уравнения на косинус mх.

Уравнение вида a sin 2 x + b sinx cosx + c cos2x = 0 называют однородным тригонометрическим уравнением второй степени.

Коэффициент а отличен от 0 и поэтому как и предыдущем уравнении соsх не равен0 и поэтому можно воспользоваться способом деления обеих частей уравнения на соs 2 х.

Получим tg 2 x + 2tgx – 3 = 0

Решаем путем введения новой переменной пусть tgx = а , тогда получаем уравнение

Возвращаемся к замене

Ответ:

Если коэффициент а = 0, то уравнение примет вид 2sinx cosx – 3cos2x = 0 решаем способом вынесения общего множителя cosx за скобки. Если коэффициент с = 0, то уравнение примет вид sin2x +2sinx cosx = 0 решаем способом вынесения общего множителя sinx за скобки . Алгоритм решения однородного тригонометрического уравнения первой степени:

Читать еще:  К чему снится ехать вверх. Ездить на машине во сне - к чему такое снится? По Современному соннику и по соннику Медеи

Посмотреть, есть ли в уравнении член asin2 x.

Если член asin2 x в уравнении содержится (т.е. а 0), то уравнение решается делением обеих частей уравнения на cos2x и последующим введение новой переменной.

Если член asin2 x в уравнении не содержится (т.е. а = 0), то уравнение решается методом разложения на множители: за скобки выносят cosx. Однородные уравнения вида a sin2m x + b sin mx cos mx + c cos2mx = 0 решаются таким же способом

Алгоритм решения однородных тригонометрических уравнений записан в учебнике на стр. 102.

Формирование навыков решения однородных тригонометрических уравнений

Открываем задачники стр. 53

1-я и 2-я группа решают № 361-в

3-я и 4-я группа решают № 363-в

Показывают решение на доске, объясняют, дополняют. Независимый эксперт оценивает.

Решение примеров из задачника № 361-в
sinx – 3cosx = 0
делим обе части уравнения на cosx 0, получаем

№ 363-в
sin2x + sinxcosx – 2cos2x = 0
разделим обе части уравнения на cos2x, получим tg2x + tgx – 2 = 0

решаем путем введения новой переменной
пусть tgx = а , тогда получаем уравнение
а2 + а – 2 = 0
Д = 9
а1 = 1 а2 = –2
возвращаемся к замене

2 cosx – 2 = 0

2cos2x – 3cosx +1 = 0

3 sin2x + sinx cosx – 2 cos2x = 0

По окончанию самостоятельной работы меняются работами и взаимопроверка. Правильные ответы проецируются на доску.

Потом сдают независимому эксперту.

Решение самостоятельной работы

Подведение итогов урока.

С каким видом тригонометрических уравнений мы познакомились на уроке?

Алгоритм решения тригонометрических уравнений первой и второй степени.

Задание на дом: § 20.3 читать. № 361(г), 363(б), повышенной трудности дополнительно № 380(а).

Если вписать верные слова, то получится название одного из видов тригонометрических уравнений.

Значение переменной, обращающее уравнение в верное равенство? (Корень)

Единица измерения углов? (Радиан)

Числовой множитель в произведении? (Коэффициент)

Раздел математики, изучающий тригонометрические функции? (Тригонометрия)

Какая математическая модель необходима для введения тригонометрических функций? (Окружность)

Какая из тригонометрических функций четная? (Косинус)

Как называется верное равенство? (Тождество)

Равенство с переменной? (Уравнение)

Уравнения, имеющие одинаковые корни? (Равносильные)

Множество корней уравнения ? (Решение)

Фамилия, имя обучающего

Познавательная активность
уч-ся

Сведение тригонометрических уравнений к однородному уравнению

(blacktriangleright) Однородные тригонометрические уравнения второй степени: [large] (если один из коэффициентов (a) или (c) равен нулю, то уравнение можно решить разложением на множители)

Способ решения: т.к. в данном уравнении ни (sin x=0) , ни (cos x=0) не являются решением, то разделим правую и левую части уравнения на (sin^2x) (или (cos^2 x) ). Тогда уравнение сведется к [large^2, x+bmathrm, x+c=0,>] которое далее решается как квадратное.

Уравнение [large] сводится к уравнению (I) с помощью формулы (d=dcdot 1=dcdot (sin^2 x+cos^2 x)) и приведения подобных слагаемых.

[large^n, x+b+d mathrm^n, x=0, a,dne 0>] Способ решения: т.к. в данном уравнении ни (mathrm, x=0) , ни (mathrm, x=0) не являются решением, то умножим правую и левую части уравнения на (mathrm^n, x) (или (mathrm^n, x) ). Тогда уравнение в виду формулы (mathrm, xcdot mathrm, x=1) сведется к [large^<2n>, x+bmathrm^n, x+d=0,>] которое далее решается как квадратное после замены (mathrm^n, x=t) .

(blacktriangleright) Однородные тригонометрические уравнения первой степени: [large] Способ решения: т.к. в данном уравнении ни (cos x=0) , ни (sin x=0) не являются решениями, то можно поделить правую и левую части уравнения на (cos x) (или (sin x) ). Тогда уравнение примет вид: [amathrm, x+b=0 Rightarrow mathrm,x=-dfrac ba]

Уравнение [large] можно решить двумя разными способами:

1 способ при помощи формул (sin x=2sincos) , (cos x=cos^2 -sin^2 ) , (c=ccdot Big(sin^2 +cos^2 Big)) уравнение сведется к уравнению (I) .

2 способ при помощи формул выражения функций через тангенс половинного угла: [begin <|lc|cr|>hline &&&\ sin=dfrac<2mathrm, dfrac2><1+mathrm^2, dfrac2> &&& cos=dfrac<1-mathrm^2, dfrac2><1+mathrm^2, dfrac2>\&&&\ hline end] уравнение сведется к квадратному уравнению относительно (mathrm, dfrac x2)

Источники:

http://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/586916/
http://infourok.ru/tema_uroka_odnorodnye_trigonometricheskie_uravneniya_10-y_klass-180733.htm
http://shkolkovo.net/catalog/reshenie_uravnenij/svedenie_k_odnorodnomu_uravneniyu

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector