Решение корней онлайн с подробным решением. Как решается система уравнений? Методы решения систем уравнения

Системы уравнений

Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений с двумя неизвестными.

Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют « x » и « y »), которые объединены в общую систему фигурной скобкой.

Например, система уравнений может быть задана следующим образом.

Чтобы решить систему уравнений, нужно найти и « x », и « y ».

Как решить систему уравнений

Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.

Способ подстановки
или
«железобетонный» метод

Первый способ решения системы уравнений называют способом подстановки или «железобетонным».

Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.

Разберем способ подстановки на примере.

Выразим из первого уравнения « x + 5y = 7 » неизвестное « x ».

Чтобы выразить неизвестное, нужно выполнить два условия:

  • перенести неизвестное, которое хотим выразить, в левую часть уравнения;
  • разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице.

Перенесём в первом уравнении « x + 5 y = 7 » всё что содержит « x » в левую часть, а остальное в правую часть по правилу переносу.

При « x » стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.

Читать еще:  Поделки тряпичные куклы. Кукла-закрутка: делаем вместе! Последовательность выполнения работы

Теперь, вместо « x » подставим во второе уравнение полученное выражение
« x = 7 − 5y » из первого уравнения.

Подставив вместо « x » выражение « (7 − 5y) » во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным « y ». Решим его по правилам решения линейных уравнений.

Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение « 3(7 − 5y) − 2y = 4 » отдельно. Вынесем его решение отдельно с помощью обозначения звездочка (*) .

Мы нашли, что « y = 1 ». Вернемся к первому уравнению « x = 7 − 5y » и вместо « y » подставим в него полученное числовое значение. Таким образом можно найти « x ». Запишем в ответ оба полученных значения.

Как решается система уравнений? Методы решения систем уравнения.

Методы решения систем уравнения.

Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение. Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Решим методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки )
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Читать еще:  Святая Мария Египетская – иконы жития. Мария Египетская: иконография и образы в монументальной живописи

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2
6x-9y=-30
-4y+9y=2+30

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ

Решение системы линейных уравнений онлайн

Данный онлайн калькулятор позволяет решать системы линейных уравнений классическим методом подстановки, когда мы поэтапно выражаем неизвестную переменную через остальные и заменяем её во всех последующих уравнениях.

Решение системы линейных уравнений

Этот онлайн калькулятор позволит вам очень просто решить систему линейных уравнений онлайн (СЛУ онлайн) методом подстановки.

Для того чтобы решить систему линейных уравнений методом подстановки онлайн выберите количество неизвестных величин:

Заполните систему линейных уравнений

Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа. Если в вашем уравнение отсутствует какой-то коэффициент, то на его месте в калькуляторе введите ноль. Вводить можно числа или дроби. Например: 1.5 или 1/7 или -1/4 и т.д.

Решение системы линейных уравнений онлайн

Метод подстановки

Решение системы линейных уравнений методом подстановки осуществляется следующим образом: сперва в одном из уравнений произвольная переменная выражается через остальные. Затем данное выражение подставляется во все остальные уравнения системы. Тем самым система из n уравнений превращается в систему n-1 уравнений с n-1 неизвестными. Затем аналогичные действия повторяются до тех пор, пока мы не приходим к конечному выражению для одной из переменных системы. Получив её значения, мы через неё выражаем пошагово все остальные неизвестные.

Читать еще:  Все оригинальные рецепты салатов из крабовых палочек. Рецепты салатов с крабовыми палочками

Данный метод решения СЛАУ называется методом подстановки (мы вместо некоторой переменной подставляем её выражение через другие переменные). Метод классический и простой в понимании, но на практике для больших систем уравнений очень громоздкий и сложный в вычислениях. Поэтому на практике при решении систем уравнений с большим количеством уравнений применяют более удобные методы, наподобие метода Гаусса, в котором преобразования уже выполняются в матрице, без лишних записей.

Все онлайн калькуляторы

  • Правила ввода функций и констант
  • Инженерный калькулятор
  • Математический анализ
    • Вычислить неопределенный интеграл
    • Вычислить определенный интеграл
    • Вычислить двойной интеграл
    • Вычислить производную
    • Вычислить предел функции
    • Вычислить сумму ряда
  • Операции с матрицами
    • Найти определитель матрицы
    • Найти обратную матрицу
  • Решение уравнений онлайн
    • Решение дифференциальных уравнений
    • Решение квадратных уравнений
    • Решение системы линейных уравнений (метод подстановки)
    • Решение системы линейных уравнений (метод Гаусса)
    • Решение системы линейных уравнений (метод Крамера)
    • Решение системы линейных уравнений (матричный метод)
  • Аналитическая геометрия
    • Уравнение прямой по двум точкам
    • Уравнение плоскости по трем точкам
    • Расстояние между точкой и прямой
    • Расстояние между точкой и плоскостью
  • Действия с векторами
    • Скалярное произведение векторов
    • Векторное произведение векторов
    • Смешанное произведение векторов
    • Проверить, образуют ли вектора базис
    • Разложить вектор по базису
  • Графические построения
    • Построить график онлайн

Работы на заказ

На сайте matematikam.ru помимо решений онлайн мы предлагаем услуги: выполнение контрольных работ на заказ. Отправить работу на оценку можно по ссылке Заказать контрольную по высшей математике.

Объявление

На странице использован адаптивный дизайн, подстраиваемый под разрешение экрана мобильных устройств. Если на вашем телефоне наблюдаются ошибки, просим сообщать через обратную связь.

Источники:

http://math-prosto.ru/?page=pages/systems_of_equations/how_to_solve_system_of_equations.php
http://tutomath.ru/uroki/sistema-uravnenij.html
http://matematikam.ru/solve-equations/sistema.php

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector