Формулы и правила дифференцирования. Найти производную: алгоритм и примеры решений
Содержание
- 1 Формулы и правила дифференцирования. Найти производную: алгоритм и примеры решений
- 1.1 Примеры решения производных с ответами
- 1.2 Алгоритм решения производных
- 1.3 Примеры решений производных
- 1.4 Правила дифференцирования: доказательство и примеры
- 1.5 Как вынести постоянный множитель за знак производной
- 1.6 Как вычислить производную суммы и производную разности
- 1.7 Как вычислить производную произведения функций
- 1.8 Как вычислить производную частного двух функций (дробного выражения с функциями)
- 1.9 Таблица производных и правила дифференцирования
- 1.10 Премиум
- 1.11 Получи пятерку
- 1.12 Как пользоваться?
Примеры решения производных с ответами
Простое объяснение принципов решения производных и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.
Алгоритм решения производных
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы
Для вычисления производных вам потребуется таблица производных. Кроме того, существуют формулы для нахождения сложных производных.
Процесс нахождения производный называется дифференцированием.
0, c neq 1″ title=»Rendered by QuickLaTeX.com» height=»21″ width=»233″ style=»vertical-align: -5px;» />
0, c neq 1″ title=»Rendered by QuickLaTeX.com» height=»21″ width=»192″ style=»vertical-align: -5px;» />
– производная суммы (разницы).
– производная произведения.
– производная частного.
Примеры решений производных
Задача
Найти производную функции
Решение
Заданная функция является сложной и её производная равна произведению производной от косинуса на производную от его аргумента:
Ответ
Задание
Найти производную функции
Решение
Обозначим , где
. Тогда, согласно правила вычисления производной сложной функции, получим:
Ответ
Задача
Найти производную функции при
.
Решение
.
.
Ответ
.
Задача
Найти производную функции .
Решение
.
После приведения подобных членов получаем:
.
Ответ
.
Задача
Найти производную функции .
Решение
В этом примере квадратный корень извлекается из суммы . Поэтому сначала вычисляем производную от квадратного корня, а затем умножаем ее на производную от подкоренного выражения:
.
Ответ
.
Задача
Найти производную функции .
Решение
Применяя правила дифференцирования дробей, получаем:
.
Применяя правила дифференцирования котангенса, получаем:
.
Учитывая, что и
, после упрощения получим:
.
Ответ
.
Задача
Найти производную функции .
Решение
Применяя правила дифференцирования дробей, получаем:
.
Ответ
.
Задача
Найти производную функции .
Решение
Применяя правила дифференцирования дробей, получаем:
.
Ответ
.
Задача
Найти производную функции .
Решение
Дифференцирование можно произвести в два этапа: вначале продифференцировать степень функции арксинус, а затем произвести дифференцирование самого арксинуса, перемножив результаты:
.
Ответ
.
Задача
Найти производную функции .
Решение
По правилам дифференцирования показательной функции с основанием , производная этой функции равна произведению самой функции на производную функции, являющейся показателем степени:
.
Ответ
.
Правила дифференцирования: доказательство и примеры
Чтобы успешно решать задачи на дифференцирование, нужно уметь находить разные виды производных. Данная статья посвящена основным правилам дифференцирования, которые постоянно используются на практике. С помощью самого определения производной функции мы сформулируем доказательства всех этих правил и подробно рассмотрим несколько примеров, чтобы понять, как они применяются при решении задач.
Условимся заранее, что все функции f ( x ) и g ( x ) , упомянутые здесь, будем считать дифференцируемыми на промежутке x , иными словами, для любого x 0 = x ∈ X будет справедливо равенство f ‘ ( x ) = lim ∆ x → 0 ∆ f ( x ) ∆ x , g ‘ ( x ) = lim ∆ x → 0 ∆ g ( x ) ∆ x . Здесь ∆ f ( x ) = f ( x + ∆ x ) — f ( x ) , ∆ g ( x ) = g ( x + ∆ x ) — g ( x ) считаются приращениями указанных функций. Также это можно записать как f ( x + ∆ x ) = f ( x ) + ∆ f ( x ) , g ( x + ∆ x ) = g ( x ) + ∆ g ( x ) .
Сформулируем основные проблемы дифференцирования:
- Как вынести постоянный множитель за знак производной.
- Как вычислить производную суммы и производную разности.
- Как вычислить производную произведения функций.
- Как вычислить производную частного двух функций (дробного выражения с функциями).
Разберем все эти случаи по порядку.
C · f ( x ) ‘ = C · f ‘ ( x ) , C ∈ R ( f ( x ) ± g ( x ) ) ‘ = f ‘ ( x ) ± g ‘ ( x ) ( f ( x ) · g ( x ) ) ‘ = f ‘ ( x ) · g ( x ) + f ( x ) · g ‘ ( x ) f ( x ) g ( x ) ‘ = f ‘ ( x ) · g ( x ) — f ( x ) · g ‘ ( x ) g 2 ( x )
Как вынести постоянный множитель за знак производной
Для начала нам нужно доказать следующую формулу:
C · f ( x ) ‘ = C · f ‘ ( x ) , C ∈ R
Используя определение производной, запишем следующее:
C · f ( x ) ‘ = lim ∆ x → 0 ∆ ( C · f ( x ) ) ∆ x = lim ∆ x → 0 C · f ( x + ∆ x ) — C · f ( x ) ∆ x = = lim ∆ x → 0 C · f ( x + ∆ x ) — f ( x ) ∆ x = lim ∆ x → 0 C · ∆ f ( x ) ∆ x
Если в таком выражении у нас есть произвольный множитель, он может быть вынесен за знак предельного перехода (мы доказывали это утверждение, когда изучали свойства предела). Значит, C · f ( x ) ‘ = lim ∆ x → 0 C · ∆ f ( x ) ∆ x = C · lim ∆ x → 0 ∆ f ( x ) ∆ x = C · f ‘ ( x ) .
Этим мы доказали первое правило дифференцирования. Разберем задачу на его применение.
Дана функция y = 2 · cos x . Необходимо вычислить ее производную.
Решение
Обратимся к таблице производных для тригонометрических функций и выясним, что cos x ‘ = — sin x .
Вынесем множитель за знак производной и получим:
y ‘ = 2 · cos x ‘ = 2 · cos x ‘ = — 2 · sin x
Ответ: y ‘ = 2 · cos x ‘ = 2 · cos x ‘ = — 2 · sin x .
Это самый простой пример. На практике чаще всего приходится предварительно преобразовывать дифференцируемую функцию, чтобы увидеть нужное значение в таблице производных и применить соответствующее правило.
Продифференцировать функцию f ( x ) = log 3 x 2 — 1 .
Решение
Зная свойства логарифмической функции, мы можем сразу записать, что f ( x ) = log 3 x 2 — 1 = 2 — 1 · log 3 x . Теперь вспоминаем, как вычислить для нее производную, и выносим постоянный множитель:
f ( x ) = log 3 x 2 — 1 ‘ = 2 — 1 · log 3 x ‘ = = 2 — 1 · log 3 x ‘ = 2 — 1 x · ln 3
Ответ: f ( x ) = 2 — 1 x · ln 3
Дана функция y = 1 2 — x + 3 . Вычислите ее производную.
Решение
Сначала нам нужно выполнить преобразование исходной функции.
y = 1 2 — x + 3 = 1 2 — x · 2 3 = 2 x 2 3
Далее применяем изученное выше правило и берем из таблицы производных соответствующее значение:
y ‘ = 2 x 2 3 ‘ = 1 2 3 · 2 x ‘ = 1 2 3 · 2 x · ln 2 = 2 x — 3 · ln 2
Ответ: y ‘ = 2 x — 3 · ln 2
Как вычислить производную суммы и производную разности
Чтобы доказать второе правило дифференцирования f ( x ) ± g ( x ) ‘ = f ‘ ( x ) ± g ‘ ( x ) , нам нужно вспомнить определение производной, а также одно из свойств, которым обладает предел непрерывной функции.
f ( x ) ± g ( x ) ‘ = lim ∆ x → 0 ∆ ( f ( x ) ± g ( x ) ) ∆ x = = lim ∆ x → 0 f x + ∆ x ± g x + ∆ x — ( f ( x ) ± g ( x ) ) ∆ x = = lim ∆ x → 0 f ( x + ∆ x ) — f ( x ) ± ( g ( x + ∆ x ) — g ( x ) ) ∆ x = = lim ∆ x → 0 f ( x + ∆ x ) — f ( x ) ∆ x ± lim ∆ x → 0 g ( x + ∆ x ) — g ( x ) ∆ x = = lim ∆ x → 0 ∆ f ( x ) ∆ x ± lim ∆ x → 0 ∆ g ( x ) ∆ x = f ‘ ( x ) ± g ‘ ( x )
Так мы можем доказать равенство производной суммы или разности n-ного количества функций сумме или разности их производных:
f 1 ( x ) ± f 2 ( x ) ± . . . ± f n ( x ) ‘ = f 1 ‘ ( x ) ± f 2 ‘ ± . . . ± f n ‘ ( x )
Вычислить производную y = x 3 + 3 x + 1 — ln x ln 5 + 3 .
Решение
Первым делом упрощаем данную функцию.
y = x 3 + 3 x + 1 — ln x ln 5 + 3 = x 3 + 3 · 3 x — ln ( 5 + 3 ) · ln x
После этого применяем второе правило – производной суммы/разности:
y ‘ = ( x 3 ) ‘ + 3 · 3 x ‘ — ln 5 + 3 · ln x ‘
Первое правило говорит нам о том, что можно вынести постоянный множитель за знак производной, значит:
y ‘ = ( x 3 ) ‘ + 3 · 3 x ‘ — ln 5 + 3 · ln x ‘ = = ( x 3 ) ‘ + 3 · 3 x ‘ — ln ( 5 + 3 ) · ln x ‘
Нам остается только заглянуть в таблицу производных и взять оттуда соответствующее значение:
y ‘ = ( x 3 ) ‘ + 3 · 3 x ‘ — ln ( 5 + 3 ) · ln x ‘ = = 3 · x 3 — 1 + 3 · 3 x · ln 3 — ln 5 + 3 x = 3 · x 2 + 3 x + 1 · ln 3 — ln ( 5 + 3 ) x
Ответ: y ‘ = 3 · x 2 + 3 x + 1 · ln 3 — ln ( 5 + 3 ) x
Как вычислить производную произведения функций
Правило дифференцирования произведения двух функций выглядит следующим образом: f x · g ( x ) ‘ = f ‘ ( x ) · g ( x ) ‘ + f ( x ) · g ‘ ( x )
Попробуем доказать его.
Для начала вычислим предел отношения приращения произведения функций к приращению аргумента. Здесь нужно вспомнить, что f ( x + ∆ x ) = f ( x ) + ∆ f ( x ) , g ( x + ∆ x ) = g ( x ) + ∆ g ( x ) , а lim ∆ x → 0 ∆ g ( x ) = 0 , lim ∆ x → 0 ∆ f ( x ) = 0 , то есть если приращение аргумента стремится к 0 , то и приращение функции также будет к нему стремиться.
( f ( x ) · g ( x ) ) ‘ = lim ∆ x → 0 ∆ ( f ( x ) · g ( x ) ) ∆ x = lim ∆ x → 0 f ( x + ∆ x ) · g ( x + ∆ x ) — f ( x ) · g ( x ) ∆ x = = lim ∆ x → 0 ( f ( x ) + ∆ f ( x ) ) + ( g ( x ) · ∆ g ( x ) ) — f ( x ) · g ( x ) ∆ x = = lim ∆ x → 0 f ( x ) · g ( x ) + g ( x ) · ∆ f ( x ) + f ( x ) · ∆ g ( x ) + ∆ f ( x ) · ∆ g ( x ) — f ( x ) · g ( x ) ∆ x = = lim ∆ x → 0 g ( x ) · ∆ f ( x ) + f ( x ) · ∆ g ( x ) + ∆ f ( x ) · ∆ g ( x ) ∆ x = = lim ∆ x → 0 g ( x ) · ∆ f ( x ) ∆ x + lim ∆ x → 0 f ( x ) · ∆ g ∆ x + lim ∆ x → 0 ∆ f ( x ) ∆ x · lim ∆ x → 0 ∆ g ( x ) = = g ( x ) · lim ∆ x → 0 ∆ f ( x ) ∆ x + f ( x ) · lim ∆ x → 0 ∆ g ( x ) ∆ x + f ‘ ( x ) · 0 = = f ‘ ( x ) · g ( x ) + f ( x ) · g ‘ ( x )
Это и есть результат, который нам нужно было доказать.
Продифференцируйте функцию y = t g x · a r c sin x .
Решение
Здесь f ( x ) = t g x , g ( x ) = a r c sin x . Можем воспользоваться правилом производной произведения:
y ‘ = ( t g x · a r c sin x ) ‘ = ( t g x ) ‘ · a r c sin x + t g x · ( a r c sin x ) ‘
Берем нужное значение из таблицы производных основных элементарных функций и записываем ответ:
y ‘ = ( t g x · a r c sin x ) ‘ = ( t g x ) ‘ · a r c sin x + t g x · ( a r c sin x ) ‘ = = a r c sin x cos 2 x + t g x 1 — x 2
Ответ: y ‘ = a r c sin x cos 2 x + t g x 1 — x 2
Дана функция y = e x x 3 . Вычислите производную.
Решение
Здесь мы имеем f ( x ) = e x , g ( x ) = 1 x 3 = x — 1 3 . Значит,
y ‘ = e x x 3 = e x · x — 1 3 ‘ = e x ‘ · x — 1 3 + e x · x — 1 3 = = e x · x — 1 3 + e x · — 1 3 · x — 1 3 — 1 = e x x 3 — e x x 4 3 = e x x 3 · 1 — 1 x
Ответ: y ‘ = e x x 3 · 1 — 1 x
Теперь разберем, что нужно делать в случае, когда производную нужно найти для произведения трех функций. По той же схеме решаются задачи с произведениями четырех, пяти и большего количества функций.
Продифференцируйте функцию y = ( 1 + x ) · sin x · ln x .
Решение
Возьмем за основу правило для двух функций. Будем считать функцией f ( x ) произведение ( 1 + x ) · sin x , а g ( x ) – ln x .
У нас получится следующее:
y ‘ = ( ( 1 + x ) · sin x · ln x ) ‘ = 1 + x · sin x ‘ · ln x + 1 + x · sin x · ln x ‘
Чтобы найти 1 + x · sin x ‘ , нам снова потребуется правило вычисления производной произведения:
1 + x · sin x ‘ = ( 1 + x ) ‘ · sin x + 1 + x · ( sin x ) ‘
С помощью этого правила и таблицы производных получим:
1 + x · sin x ‘ = ( 1 + x ) ‘ · sin x + 1 + x · ( sin x ) ‘ = = 1 ‘ + x ‘ · sin x + ( 1 + x ) · cos x = 0 + 1 · x 1 — 1 · sin x + ( 1 + x ) · cos x = = ( 0 + 1 ) · sin x + 1 + x · cos x = sin x + cos x + x · cos x
Теперь подставим в формулу то, что у нас получилось:
y ‘ = 1 + x · sin x · ln x ‘ = 1 + x · sin x ‘ · ln x + ( 1 + x ) · sin x · ( ln x ) ‘ = = sin x + cos x + x · cos x · ln x + ( 1 + x ) · sin x x
Ответ: y ‘ = sin x + cos x + x · cos x · ln x + ( 1 + x ) · sin x x
Из этого примера видно, что иногда приходится применять несколько правил дифференцирования подряд для вычисления нужного результата. Это не так сложно, как кажется, главное – соблюдать нужную последовательность действий.
Дана функция y = 2 · s h x — 2 x · a r c t g x , вычислите ее производную.
Решение
Исходная функция является разностью выражений 2 · s h x и 2 x · a r c t g x , значит, y ‘ = 2 · s h x — 2 x · a r c t g x ‘ = 2 · s h x ‘ — 2 x · a r c t g x ‘ . Здесь можно вынести за знак производной число 2 , а в другом произведении применить подходящее для произведений правило:
y ‘ = 2 · s h x ‘ — 2 x · a r c t g x ‘ = 2 · s h x ‘ — 2 x ‘ · a r c t g x + 2 x · ( a r c t g x ) ‘ = = 2 · c h x — 2 x · ln 2 · a r c t g x + 2 x 1 + x 2 = 2 · c h x — 2 x · ln 2 · a r c t g x — 2 x 1 + x 2
Ответ: y ‘ = 2 · c h x — 2 x · ln 2 · a r c t g x — 2 x 1 + x 2
Как вычислить производную частного двух функций (дробного выражения с функциями)
Данное правило выглядит следующим образом: f ( x ) g ( x ) ‘ = f ‘ ( x ) · g ( x ) — f ( x ) · g ‘ ( x ) g 2 ( x ) .
Сразу отметим, что g ( x ) не будет обращаться в 0 ни при каких значениях x из указанного промежутка. Согласно определению производной, получим:
f ( x ) g ( x ) ‘ = = lim ∆ x → 0 ∆ f ( x ) g ( x ) ∆ x = lim ∆ x → 0 f ( x + ∆ x ) g ( x + ∆ x ) — f ( x ) g ( x ) ∆ x = lim ∆ x → 0 f ( x + ∆ x ) · g ( x ) — g ( x + ∆ x ) · f ( x ) ∆ x · g ( x + ∆ x ) · g ( x ) = = 1 g 2 ( x ) · lim ∆ x → 0 ( f ( x ) + ∆ f ( x ) ) · g ( x ) — ( g ( x ) + ∆ g ( x ) ) · f ( x ) ∆ x = = 1 g 2 ( x ) · lim ∆ x → 0 f ( x ) · g ( x ) + g ( x ) · ∆ f ( x ) — f ( x ) · g ( x ) — f ( x ) · ∆ g ( x ) ∆ x = = 1 g 2 ( x ) · lim ∆ x → 0 g x · ∆ f ( x ) — f ( x ) · ∆ g ( x ) ∆ x = = 1 g 2 ( x ) · g ( x ) · lim ∆ x → 0 ∆ f ( x ) ∆ x — f ( x ) · lim ∆ x → 0 ∆ g ( x ) ∆ x = = f ‘ ( x ) · g ( x ) — f ( x ) · g ‘ ( x ) g 2 ( x )
Продифференцируйте функцию y = sin x 2 · x + 1 .
Решение
Эта функция является отношением двух выражений 2 x + 1 и sin x . Воспользуемся приведенным выше правилом дифференцирования дробного выражения и получим:
y ‘ = sin x 2 · x + 1 ‘ = sin x ‘ · 2 · x + 1 — sin x · 2 · x + 1 ‘ 2 · x + 1 2
После этого нам потребуется правило для суммы, а также правило вынесения постоянного множителя за знак производной:
y ‘ = sin x ‘ · 2 · x + 1 — sin x · 2 · x + 1 ‘ 2 · x + 1 2 = = cos x · ( 2 · x + 1 ) — sin x · 2 x ‘ + 1 ‘ ( 2 · x + 1 ) 2 = cos x · ( 2 · x + 1 ) — sin x · ( 2 · x ‘ + 0 ) ( 2 · x + 1 ) 2 = = cos x · 2 · x + 1 — sin x · ( 2 · 1 · x 1 — 1 + 0 ) ( 2 · x + 1 ) 2 = 2 · x · cos x + cos x — 2 · sin x ( 2 · x + 1 ) 2
Ответ: y ‘ = 2 · x · cos x + cos x — 2 · sin x ( 2 · x + 1 ) 2
Возьмем задачу на применение всех изученных правил.
Дана функция y = 3 e x — x 2 · ln x — 2 · x a x + 2 sin x · a r c cos x , где значение undefined является положительным действительным числом. Вычислите производную.
Решение
y ‘ = 3 · e x ‘ — x 2 · ln x — 2 · x a x ‘ + 2 sin x · a r c cos x ‘
Поясним, как это получилось.
Первым слагаемым будет 3 · e x ‘ = 3 · e x ‘ = 3 · e x .
x 2 · ln x — 2 · x a x ‘ = x 2 · ln x — 2 · x · a x — x 2 · ln x — 2 · x · a x ‘ a x 2 = = x 2 · ln x ‘ — 2 · x ‘ · a x — x 2 · ln x — 2 · x · a x · ln a a 2 · x = = 2 · x 2 — 1 · ln x + x 2 · 1 x — 2 · 1 · x 1 — 1 · a x — x 2 · ln x — 2 · x · a x · ln a a 2 · x = = 2 · x 2 — 1 · ln x + x 2 · 1 x — 2 · 1 · x 1 — 1 · a x — x 2 · ln x — 2 · x · a x · ln a a 2 · x = = 2 · x · ln x + x — 2 · a x — x 2 · ln x — 2 · x · a x · ln a a 2 · x = = x · ln x · ( 2 — x · ln a ) + x · 1 — 2 · ln a — 2 a x
Вычисляем третье слагаемое:
2 sin x · a r c cos x ‘ = 2 · sin x · a r c cos x ‘ = = 2 · sin x ‘ · a r c cos x + sin x · a r c cos x ‘ = = 2 · cos x · a r c cos x — sin x 1 — x 2
Теперь собираем все, что у нас получилось:
y ‘ = 3 · e x ‘ — x 2 · ln x — 2 · x a x + 2 sin x · a r c cos x ‘ = = 3 · e x — x · ln x · ( 2 — x · ln a ) + x · 1 — 2 · ln a — 2 a x + + 2 · cos x · a r c cos x — sin x 1 — x 2
В задачах, которые мы разобрали в этой статье, использовались только основные элементарные функции, которые были связаны между собой знаками простых арифметических действий. Они нагляднее всего иллюстрируют правила дифференцирования. Однако возможно их применение и к более сложным функциям.
После того, как мы разберем, что такое производная сложной функции, мы сможете проводить дифференцирование выражений любой сложности.
Таблица производных и правила дифференцирования
О том, что такое производная, мы рассказали в статье «Геометрический смысл производной». Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой — вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.
Ты нашел то, что искал? Поделись с друзьями!
Для решения задач на исследование функции в вариантах ЕГЭ ЕГЭ необходима таблица производных и правила дифференцирования, а также знания о том, как связана производная с поведением функции.
Смотри также, как решаются задачи ЕГЭ на применение производной: задача 7 и задача 12.
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
Обучающее видео
БЕСПЛАТНО
Техническая поддержка:
help@ege-study.ru (круглосуточно)
Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!
Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.
Все поля обязательны для заполнения
Премиум
Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.
Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.
- Уравнения (задача 13)
- Стереометрия (задача 14)
- Неравенства (задача 15)
- Геометрия (задача 16)
- Финансовая математика (задача 17)
- Параметры (задача 18)
- Нестандартная задача на числа и их свойства (задача 19).
Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.
Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.
Получи пятерку
Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!
Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.
Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.
Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.
Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.
Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.
Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.
Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.
Как пользоваться?
- Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
- Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
- Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
- Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
- Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.
Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.
Это пробная версия онлайн курса по профильной математике.
Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.
— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.
Регистрируйтесь, это бесплатно!
Нажимая на кнопку, вы даете согласие на обработку своих персональных данных
Источники:
http://nauchniestati.ru/spravka/primery-resheniya-proizvodnyh/
http://zaochnik.com/spravochnik/matematika/proizvodnye/pravila-differentsirovanija/
http://ege-study.ru/ru/ege/materialy/matematika/tablica-proizvodnyx/