Корень уравнения с одной переменной что значит. Методы решения уравнений с одной переменной

Уравнение с одной переменной

Уравнение с одной переменной.

Уравнение – это равенство, в котором присутствует одна или несколько переменных.
Мы рассмотрим случай, когда в уравнении одна переменная, то есть одно неизвестное число. По сути, уравнение – это вид математической модели. Поэтому в первую очередь уравнения необходимы нам для решения задач.

Вспомним, как составляется математическая модель для решения задачи.
Например, в новом учебном году количество учащихся в школе №5 увеличилось вдвое. После того, как 20 учеников перешли в другую школу, в общей сложности в школе №5 стало учиться 720 учеников. Сколько учащихся было в прошлом году?

Нам нужно выразить то, что сказано в условии математическим языком. Пусть количество учащихся в прошлом году будет X. Тогда согласно условию задачи,
2X – 20 = 720. У нас получилась математическая модель, которая представляет собой уравнение с одной переменной. Если точнее, то это уравнение первой степени с одной переменной. Осталось найти его корень.


Что такое корень уравнения?

То значение переменной, при котором наше уравнение обратится в верное равенство, называется корнем уравнения. Бывают такие уравнения, у которых много корней. Например, в уравнении 2*X = (5-3)*X любое значение X является корнем. А уравнение X = X +5 вообще не имеет корней, так как какое бы мы не подставили значение X, у нас не получится верное равенство. Решить уравнение означает найти все его корни, или определить, что оно не имеет корней. Таким образом, чтобы ответить на наш вопрос, нам нужно решить уравнение 2X – 20 = 720.

Как решать уравнения с одной переменной?

Для начала запишем базовые определения. Каждое уравнение имеет правую и левую части. В нашем случае, (2X – 20) – левая часть уравнения (она стоит слева от знака равенства), а 720 – правая часть уравнения. Слагаемые правой и левой части уравнения называются членами уравнения. У нас членами уравнения являются 2X, -20 и 720.

Сразу скажем про 2 свойства уравнений:

  1. Любой член уравнения можно переносить из правой части уравнения в левую, и наоборот. При этом надо изменить знак этого члена уравнения на противоположный. То есть, записи вида 2X – 20 = 720, 2X – 20 – 720 = 0, 2X = 720 + 20, -20 = 720 – 2X равносильны.
  2. Обе части уравнения можно умножить или разделить на одно и то же число. Это число не должно быть равно нулю. То есть, записи вида 2X – 20 = 720, 5*(2X – 20) = 720*5, (2X – 20):2 = 720:2 также равносильны.

Воспользуемся этими свойствами для решения нашего уравнения.

Перенесем -20 в правую часть с противоположным знаком. Получим:

2X = 720 + 20. Сложим то, что у нас в правой части. Получим, что 2X = 740.

Теперь разделим левую и правую части уравнения на 2.

2X:2 = 740:2 или X = 370. Мы нашли корень нашего уравнения и заодно нашли ответ на вопрос нашей задачи. В прошлом году в школе №5 было 370 учеников.

Проверим, действительно ли наш корень обращает уравнение в верное равенство. Подставим вместо X число 370 в уравнение 2X – 20 = 720.

Итак, чтобы решить уравнение с одной переменной его нужно привести к так называемому линейному уравнению вида ax = b, где a и b – некоторые числа. Затем левую и правую часть разделить на число a. Получим, что x = b:a.

Что означает привести уравнение к линейному уравнению?

Рассмотрим такое уравнение:

5X — 2X + 10 = 59 — 7X +3X.

Это также уравнение с одной неизвестной переменной X. Наша задача привести это уравнение к виду ax = b.

Читать еще:  Порча на человеке как узнать симптомы. Как проверить если ли на тебе наведеная порча

Для этого сначала соберем все слагаемые, имеющие в качестве множителя X в левой части уравнения, а остальные слагаемые — в правой части. Слагаемые, имеющие в качестве множителя одну и ту же букву, называют подобными слагаемыми.

5X — 2X + 7X – 3X = 59 – 10.

Согласно распределительному свойству умножения мы можем вынести одинаковый множитель за скобки, а коэффициенты (множители при переменной x) сложить. Этот процесс также называют приведением подобных слагаемых.

7X = 49. Мы привели уравнение к виду ax = b, где a = 7, b = 49.

А как мы написали выше, корнем уравнения вида ax = b будет x = b:a.

То есть X = 49:7 = 7.

Алгоритм нахождения корней уравнения с одной переменной.

  1. Собрать подобные слагаемые в левой части уравнения, остальные слагаемые – в правой части уравнения.
  2. Привести подобные слагаемые.
  3. Привести уравнение к виду ax = b.
  4. Найти корни по формуле x = b:a.

Примечание. В данной статье мы не рассматривали те случаи, когда переменная возводится в какую-нибдуь степень. Иначе говоря мы рассматривали уравнения первой степени с одной переменной.

Корень уравнения с одной переменной что значит. Методы решения уравнений с одной переменной

Уравнение – это равенство, содержащее переменную, обозначенную буквой.

Корень уравнения (или решение уравнения) – это такое значение переменной, при котором уравнение превращается в верное равенство.

Пример: решим уравнение (то есть найдем корень уравнения): 4x – 15 = x + 15

Результат: уравнение имеет один корень – число 10.

Уравнение может иметь и два, три, четыре и более корней.
Например, уравнение (х — 4)(х — 5)(х — 6) = 0 имеет три корня: 4, 5 и 6.

Уравнение может вовсе не иметь корней.
Например, уравнение х + 2 = х не имеет корней, т.к. при любом значении х равенство невозможно.

Равносильность уравнений.

Два уравнения являются равносильными, если они имеют одинаковые корни либо если оба уравнения не имеют корней.

Уравнения х + 3 = 5 и 3х – 1 = 5 равносильны, так как в обоих уравнениях х = 2.

Уравнения х 4 + 2 = 1 и х 2 + 5 = 0 равносильны, так как оба уравнения не имеют корней.

Целое уравнение с одной переменной

Целое уравнение с одной переменной – это уравнение, левая и правая части которого являются целыми выражениями (о целых выражениях см.раздел «Рациональные выражения»).

Уравнение с одной переменной может быть записано в виде P(x) = 0, где P(x) – многочлен стандартного вида.

Например:
y 2 + 3y – 6 = 0
(здесь P(x) представлен в виде многочлена y 2 + 3y – 6).

В таком уравнении степень многочлена называют степенью уравнения.

В нашем примере представлено уравнение второй степени (так как в нем многочлен второй степени).

Уравнение первой степени.

Уравнение первой степени можно привести к виду:

где x – переменная, a и b – некоторые числа, причем a ≠ 0.

Отсюда легко вывести значение x:

Это значение x является корнем уравнения.

Уравнения первой степени имеют один корень.

Уравнение второй степени.

Уравнение второй степени можно привести к виду:

где x – переменная, a, b, c – некоторые числа, причем a ≠ 0.

Число корней уравнения второй степени зависит от дискриминанта:

— если D > 0, то уравнение имеет два корня;

— если D = 0, то уравнение имеет один корень;

Уравнение третьей степени может иметь не более трех корней.

Уравнение четвертой степени.

Уравнение четвертой степени можно привести к виду:

Уравнение третьей степени может иметь не более четырех корней.

Обобщение:

1) уравнение пятой, шестой и т.д. степеней можно легко вывести самостоятельно, следуя приведенной выше схеме;

2) уравнение n-й степени может иметь не более n корней.

Пример 1: Решим уравнение

Мы видим, что это уравнение третьей степени. Значит, у него может быть от нуля до трех корней.
Найдем их и тем самым решим уравнение.
Разложим левую часть уравнения на множители:

Применим правило разложения многочлена способом группировки его членов. Для этого поставим перед вторыми скобками число 1:

Теперь сгруппируем многочлены x 2 и –1, являющиеся множителями многочлена x–8. Получим две группы многочленов: (x 2 –1) и (x – 8). Следовательно, наше уравнение примет новый вид:

Читать еще:  Елисей – значение имени, характер и варианты судьбы. Происхождение и характер имени елисей

Здесь выражение x 2 – 1 можно представить в виде x 2 – 1 2 . А значит, можем применить формулу сокращенного умножения: x 2 – 1 2 = (x – 1)(x + 1). Подставим в наше уравнение это выражение и получим:

Дальше все просто. При x – 8 = 0 всё уравнение тоже равно нулю. И так – в случае и с двумя остальными выражениями x – 1 и x + 1. Таким образом:

Осталось найти корни нашего уравнения:

Уравнение решено. Оно имеет три корня: 8, 1 и –1.

Пример 2: Решим уравнение

(x 2 – 5x + 4)(x 2 – 5x +6) = 120

Это уравнение сложнее. Но его можно упростить оригинальным образом – методом введения новой переменной.
В нашем уравнении дважды встречается выражение x 2 – 5x.
Мы можем обозначить его переменной y. То есть представим, что x 2 – 5x = y.

Тогда наше уравнение обретает более простой вид:

Приравняем уравнение к нулю:

y 2 + 10y + 24 – 120 = 0

Мы получили обычное квадратное уравнение. Найдем его корни. Нет необходимости производить расчеты: о том, как решать подобные уравнения, подробно написано в разделах «Квадратные уравнения» и «Формулы корней квадратного уравнения. Дискриминант». Здесь же мы сразу выведем результат. Квадратное уравнение y 2 + 10y – 96 = 0 имеет два корня:

Буквой y мы заменили выражение x 2 – 5x. А значит, мы уже можем подставить значения y и найти корни заданного уравнения, тем самым решив задачу:

1) Сначала применяем значение y1 = –16:

Чтобы решить это уравнение, превращаем его в квадратное уравнение:

Решив его, мы обнаружим, что оно не имеет корней.

2) Теперь применяем значение y2 = 6:

Решив это квадратное уравнение, мы увидим, что у него два корня:

Уравнение решено. Оно имеет два корня: –1 и 6.

Метод введения новой переменной позволяет легко решать уравнения четвертой степени, которые являются квадратными относительно x 2 (такие уравнения называют биквадратными).

Уравнения с одной переменной

Возьмем два выражения с переменной: 4х и 5х + 2. Соединив их знаком равенства, получим предложение 4х = 5х + 2. Оно содержит переменную и при подстановке значений переменной обращается в высказывание.

Например, при х = -2 предложение 4х = 5х + 2 обращается в истинное числовое равенство 4-(-2) = 5-(-2) + 2, а при х = 1 — в лож­ное 4-1 = 5-1+2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.

В общем виде уравнение с одной переменной можно определить так:

Определение.Пусть f(х) и q(х) — два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) = q(х) называется уравнением с одной переменной.

Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения (или его решением). Решить уравнение — это значит найти множество его корней.

Так, корнем уравнения 4х = 5х + 2, если рассматривать его на множестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть <-2>.

Пусть на множестве действительных чисел задано уравнение (х-1)(х+2)=0. Оно имеет два корня — числа 1 и -2. Следовательно, множество корней данного уравнения таково: <-2,- 1>.

Уравнение (3х + 1) × 2 = 6х + 2, заданное на множестве действительных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х: если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.

Уравнение (3х + 1)-2 = 6х + 1, заданное на множестве действительных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имеет корней и что множество его корней пусто.

Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного данного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

Читать еще:  Заклинания колдуна baldur s gate по уровням. Классы, а так же как и кого ими есть

Определение.Два уравнения f1(х) = q1(х) и f2(х) = q2(х) называются равносильными, если множества их корней совпадают.

Например, уравнения х 2 — 9 = 0 и (2х + 6)(х — 3) = 0 равносильны так как оба имеют своими корнями числа 3 и -3. Равносильны и уравнения (3х + 1)-2 = 6х + 1 и х 2 + 1 = 0, так как оба не имеют корней, т.е. множества их корней совпадают.

Определение. Замена уравнения равносильным ему уравнением называется равносильным преобразованием.

Выясним теперь, какие преобразования позволяют получать равносильные уравнения.

Теорема 1. Пусть уравнение f(х) = q(х) задано на множестве и h(х) — выражение, определенное на том же множестве. Тогда уравнение f(х) = q(х) (1) и f(х) + h(х) = q(х) + h(х) (2) равносильны.

Доказательство. Обозначим через Т1, — множество решений уравнения (1), а через Т2 — множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т1 = Т2. Чтобы убедиться в этом, необходимо показать, что любой корень из Т1 является корнем уравнения (2) и, наоборот, любой корень из Т2, является корнем уравнения (1).

Пусть число а — корень уравнения (1). Тогда а Î Т1, и при подстановке в уравнение (1) обращает его в истинное числовое равенство f(а) = q(а), а выражение h(х) обращает в числовое выражение h(а) имеющее смысл на множестве X. Прибавим к обеим частям истинного равенства f(а) = q(а) числовое выражение h(а). Получим, согласно свойствам истинных числовых равенств, истинное числовое равенство f(а) + h(а) = q(а) + h(а), которое свидетельствует о том, что число а является корнем уравнения (2).

Итак, доказано, что каждый корень уравнения (1) является корнем и уравнения (2), т.е. Т1 Ì Т2.

Пусть теперь а — корень уравнения (2). Тогда а Î Т2, и при подстановке в уравнение (2) обращает его в истинное числовое равенство f(а) + h(а) = q(а) + h(а). Прибавим к обеим частям этого равенства числовое выражение — h(а). Получим истинное числовое равенство f(а) = q(а), что число а — корень уравнения (1).

Итак, доказано, что каждый корень уравнения (2) является и кор­нем уравнения (1), т.е. Т2 Ì Т1.

Так как Т1 Ì Т2 и Т2 Ì Т1, то по определению равных множеств Т1 = Т2, а значит, уравнения (1) и (2) равносильны.

Данную теорему 1 можно сформулировать иначе: если к обеим частям уравнения с областью определения Х прибавить одно и то же выраже­ние с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекают следствия, которые используются при решении уравнений:

1. Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному.

2. Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.

Теорема 2.Пусть уравнение f(х) = q(х), задано на множестве Х и h(х) — выражение, которое определено на том же множестве и не об­ращается в нуль ни при каких значениях х из множества X. Тогда уравнения f(х) = q(х) и f(х) × h(х) = q(х) × h(х) равносильны.

Доказательство этой теоремы аналогично доказательству теоремы 1.

Теорему 2 можно сформулировать иначе: если обе части уравнения с областью определения Х умножить на одно и то же выражение, которое определено на том же множестве и не обращается на нем в нуль, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекает следствие: если обе части уравнения умножить (или разделить) на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному.

Решим уравнение , х Î R, и обоснуем все преобразования, которые мы будем выполнять в процессе решения.

Источники:

http://nashol.com/2014090479749/uravnenie-s-odnoi-peremennoi.html
http://test1.czl23.ru/plugins/content/content.php?content.21
http://studopedia.ru/10_33905_uravneniya-s-odnoy-peremennoy.html

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector